Skip to main content
Log in

SMA/PUA based double-layer thermo-expandable microcapsules and their performances

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the double-layered thermo-expandable microcapsules with n-hexane as the core and styrene maleic anhydride copolymer (SMA) / polyurea (PUA) as the shell materials are prepared by combination of interfacial polymerization and co-precipitation method. The successful encapsulation of n-hexane in the PUA microcapsules is confirmed by simultaneous thermal analyzer (TG-IR). The properties of the thermo-expandable microcapsules (TEMs) are investigated by thermo-gravimetric analyzer (TGA), laser particle size analyzer, optical microscope and thermo-mechanical analyzer (TMA), respectively. The results show that polyurea shows a good encapsulation effect on n-hexane. When the dosage of n-hexane is 60 wt%, the microcapsules with polyurea as the shell have the encapsulation efficiency as high as 96.7%. However, the thermo-expandable performance of PUA-TEMs is poor. Double-layered thermo-expandable microcapsules with SMA/PUA as the shell (SMA/PUA-TEMs) are then obtained by introducing SMA copolymer as a second layer to enhance the thermo-expandable performance of the microcapsules. The introduction of styrene-maleic anhydride copolymer onto the PUA-TEMs reduces the encapsulation amount of n-hexane in the microcapsules, but the thermo-expandable performance is significantly improved. When the mass ratio of SMA to PUA-TEMs is 2:1, the SMA/PUA-TEMs with the encapsulation efficiency of n-hexane of 41.1% and the particle size of about 2.5 μm are obtained. SMA/PUA-TEMs show onset and peak expansion temperatures of 195 and 216 °C, respectively, and the expansion ratio of 2.4 time. The tentative investigation of the foaming performance of the SMA/PUA thermo-expandable microcapsules in polyvinyl butyral matrix shows that the thermo-expandable microcapsules can be well dispersed in the polymer matrix and have good expandable performance. This study provides a novel kind of thermo-expandable microcapsules with high onset and peak expansion temperatures which are beneficial to produce plastic foam with high Tg or Tm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The data is available upon request.

References

  1. Zhang LC, Li J, Wang CY, Ren Q (2023) Preparation and properties of thermo-expandable microcapsules with anionic/nonionic waterborne polyurethane as the shell. Polym Bull 80:10031–10049. https://doi.org/10.1007/s00289-022-04539-x

    Article  CAS  Google Scholar 

  2. Bai X, Li J, Wang CY, Ren Q (2020) Thermo-expandable microcapsules with polyurethane as the shell. J Polym Res 27:185. https://doi.org/10.1007/s10965-020-02160-y

    Article  CAS  Google Scholar 

  3. Wei G, Pei XL, Yin XG, Ban DM, Hai F, He L (2020) Synthesis of high-temperature thermally expandable microcapsules and their effects on foaming quality and surface quality of foamed ABS materials. e-Polymers 20(1):519–527. https://doi.org/10.1515/epoly-2020-0021

    Article  CAS  Google Scholar 

  4. Tomoki U, Shota T, Tomonori K, Akihiro N (2020) Effect of viscoelastic properties of the base polymer on extrusion foaming with thermally expandable microcapsules. Polym Eng Sci 60(3):558–562. https://doi.org/10.1002/pen.25313

    Article  CAS  Google Scholar 

  5. Mo LX, Meng XY, Zhao J, Pan YQ, Sun ZC, Guo ZX, Wang W, Peng ZC, Shang C, Han SB, Hu K, Cao MJ, Chen YJ, Xin ZQ, Lu JS, Li LH (2021) Printed flexible pressure sensor based on microcapsule controllable structure and composite dielectrics. Flex Print Electron 6:014001. https://doi.org/10.1088/2058-8585/abe842

    Article  CAS  Google Scholar 

  6. Park JW, Lee SJ, Ji SH, You HN, Kim JH, Ryu KJ (2019) Effects of shell thickness of thermally expandable microspheres on the application of underbody coating for vehicles Preprints. https://doi.org/10.20944/PREPRINTS201906.0284.V1

  7. Zeng L, Guo P, Wang W, Zhang Y, Wang SP, Peng XQ (2020) Composite foamed alkali-activated concrete with slag and steel slag. Magazine Concrete Res 72(5/6):262–270. https://doi.org/10.1680/jmacr.17.00128

    Article  Google Scholar 

  8. Li FR, Zhang QQ, Jiao SZ, Sun ZC, Wen JY, Du XY, Liu RP, Li LH (2020) Preparation, characterization and foaming performance of thermally expandable microspheres. Mater Res Express 7(11):115302. https://doi.org/10.1088/2053-1591/abc4b1

    Article  CAS  Google Scholar 

  9. Xie G, Pan P, Bao Y (2017) Morphology and blowing agent encapsulation efficiency of vinylidene chloride copolymer microspheres synthesized by suspension polymerization in the presence of a blowing agent. J Appl Polym Sci 134(4):44376. https://doi.org/10.1002/app.44376

    Article  CAS  Google Scholar 

  10. Tian SC, Cao JX, Xie GM, Wang MW, Shi YY, Yi Y, Yang CL, Xiao YH, Wei XL, Tian BM, Ma ZH (2021) Study on preparation and process of poly(MMA-St) thermally expandable core-shell microspheres. J Appl Polym Sci 9:10138. https://doi.org/10.1002/app.49927

    Article  CAS  Google Scholar 

  11. Musse N, Guilherme J, Braga ER, Pontes LAM (2024) Environmental Feasibility Analysis for the Acrylonitrile Production from Glycerol. Chem Eng Technol 47(1):184–191. https://doi.org/10.1002/ceat.202300052

    Article  CAS  Google Scholar 

  12. Guo YP, Chang H, Wang QL, Shao CJ, Xu JM (2018) Hydrolytic denitrification and decynidation of acrylonitrile in wastewater with Arthrobacter nitroguajacolicus ZJUTB06-99. AMB Express 8(1):191. https://doi.org/10.1186/s13568-018-0719-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rheem MJ, Jung HJ, Ha JU, Baeck SH, Shim SE (2017) Suspension polymerization of thermally expandable microspheres using low-temperature initiators. Colloid Polym Sci 295:171–180. https://doi.org/10.1007/s00396-016-3993-5

    Article  CAS  Google Scholar 

  14. Wang L, Yang X, Zhang J, Zhang C, He L (2014) The compressive properties of expandable microspheres/epoxy foams. Compos B Eng 56:724–732. https://doi.org/10.1016/j.compositesb.2013.09.030

    Article  CAS  Google Scholar 

  15. An FZ, Wang ZW, Hu J, Gao XQ, Shen KZ, Deng C (2014) Morphology control technologies of polymeric materials during processing. Macromolecular Mater Eng 299(4):400–423. https://doi.org/10.1002/mame.201300216

    Article  CAS  Google Scholar 

  16. Phoungtawee P, Crespy D (2021) Shining a new light on the structure of polyurea/polyurethane materials. Polym Chem 12(27):3845–4008. https://doi.org/10.1039/D1PY00649E

    Article  Google Scholar 

  17. Raaijmakers MJT, Benes NE (2016) Current trends in interfacial polymerization chemistry. Prog Polym Sci 63:86–142. https://doi.org/10.1016/j.progpolymsci.2016.06.004

    Article  CAS  Google Scholar 

  18. Chen H, Liu X, Deng S, Wang HK, Qu XM, Huang LY, Li JB, Jin CZ (2020) Pretilachlor releasable polyurea microcapsules suspension optimization and its paddy field weeding investigation. Front Chem 8:826. https://doi.org/10.3389/fchem.2020.00826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao AQ, An JL, Yang JL, Yang EH (2018) Microencapsulated phase change materials with composite titania-polyurea(TiO2-PUA) shell. Appl Energy 215:468–478. https://doi.org/10.1016/j.apenergy.2018.02.057

    Article  CAS  Google Scholar 

  20. Cao HC, Zhang DX, Liu SG, Luo J, Jing TF, Pan SH, Liu F, Li BX (2021) Mu W Achieving Win-Win Ecotoxicological Safety and Fungicidal Activity of Pyraclostrobin-Loaded Polyurea microcapsules by selecting proper polyamines. J Agric Food Chem 69:2099–2107. https://doi.org/10.1021/acs.jafc.0c07482

    Article  CAS  PubMed  Google Scholar 

  21. Rao J, Chandrani AN, Powar A, Chandra S (2021) Release behavior of oxyfluorfen polyurea capsules prepared using PVA and kraft lignin as emulsifying agents and phytotoxicity study on paddy. Green Chem Lett Rev 14(2):203–219. https://doi.org/10.1080/17518253.2021.1897690

    Article  CAS  Google Scholar 

  22. Zhou J, Xu WX, Wang YN, Shi B (2017) Preparation of polyurea microcapsules containing phase change materials in a rotating packed bed. RSC Adv 7(34):21196–21204. https://doi.org/10.1039/C7RA01805C

    Article  CAS  Google Scholar 

  23. Sun X, Su JC, Zhang R (2021) Preparation and characterization of double-layered microcapsules containing Nano-SiO2. Int J Polym Sci 2021:6675278. https://doi.org/10.1155/2021/6675278

    Article  CAS  Google Scholar 

  24. Li WT, Wei Q, Chen Q, Jiang ZW (2021) Microencapsulation and evaluation of styrene maleic anhydride/epoxy for mechanical triggering self-healing of cementitious materials. Cem Concr Compos 124:104247. https://doi.org/10.1016/j.cemconcomp.2021.104247

    Article  CAS  Google Scholar 

  25. Latnikova A, Jobman M (2017) Towards microcapsules with improved barrier properties. Top Curr Chem 375:64. https://doi.org/10.1007/s41061-017-0152-5

    Article  CAS  Google Scholar 

Download references

Funding

No funding supports this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Ethics declarations

Ethical approval

This work complies with ethical standard.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Li, J., Shi, W. et al. SMA/PUA based double-layer thermo-expandable microcapsules and their performances. J Polym Res 31, 108 (2024). https://doi.org/10.1007/s10965-024-03955-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03955-z

Keywords

Navigation