Skip to main content
Log in

Natural multi-function additive for linear low-density polyethylene: Scutellarin baicalensis extractive

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Scutellaria baicalensis (SBC) richly possess active ingredients to satisfy the conditions for functional applications. Herein, the active components of SBC are extracted and introduced into linear low-density polyethylene (LLDPE) to perform as functional additives. The thermal oxygen stability, processing stability, ultraviolet (UV) stability, flame retardancy and mechanical properties are comprehensively investigated. Compared with pure LLDPE, the oxidation induction time (OIT) of LLDPE incorporating SBC extractive (SBE) increased ca. 24 times. The combination of SBE and antioxidant 626 produce more superior antioxidant capacity (OIT of 99.7 min is achieved), revealing an outstanding synergistic effect. After UV irradiation, the carbonyl index variation of the LLDPE adding SBE is less than 50% of that of pure LLDPE. The TGA test showed that SBE was involved in the free radical elimination process. Moreover, the horizontal burning time increases by 37 s with the introduction of both SBE and antioxidant 626. Those results adequately manifest that SBE is a natural, high-performance multi-function additive for LLDPE. This study validly expands the multi-functional application of natural substances into polyolefins, which is a great benefit to the green development of polymer-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bai MQ, Liu Y, Liu L, Yin J, Zhang YG, Zhao DF, Roy N (2021) Kinetics of polyethylene pyrolysis in the atmosphere of ethylene. J Therm Anal Calorim 144(2):383–391. https://doi.org/10.1007/s10973-021-10640-6

    Article  CAS  Google Scholar 

  2. Okolo C, Rafique R, Iqbal SS, Saharudin MS, Inam F (2020) Carbon nanotube reinforced high-density polyethylene materials for offshore sheathing applications. Molecules 25(13):2960. https://doi.org/10.3390/molecules25132960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yuan K, Luo X (2020) A density functional theory study of the structural and electronic properties of pure and H-2 doped polyethylene under high pressure and high-temperature conditions of earth layers. Aip Adv 10(6):065326. https://doi.org/10.1063/5.0009672

    Article  ADS  CAS  Google Scholar 

  4. Zhang Y, Li H, Li M, Liu WW, Li Q, Hu Y (2019) Synthesis and properties of novel polyethylene-based antioxidants with hindered phenols as side groups. Macromol Chem Phys 221(3):1900410. https://doi.org/10.1002/macp.201900410

    Article  CAS  Google Scholar 

  5. Suresh B, Maruthamuthu S, Khare A, Palanisamy N, Muralidharan VS, Ragunathan R, Kannan M, Navaneetha Pandiyaraj K (2011) Influence of thermal oxidation on surface and thermo-mechanical properties of polyethylene. J Polym Res 18(6):2175–2184. https://doi.org/10.1007/s10965-011-9628-0

    Article  CAS  Google Scholar 

  6. Gol’dberg VM, Zaikov GE (1987) Kinetics of mechanical degradation in melts under model conditions and during processing of polymers—A review. Polym Degrad Stabil 19(3):221–250. https://doi.org/10.1016/0141-3910(87)90057-7

    Article  CAS  Google Scholar 

  7. Moss S, Zweifel H (1989) Degradation and stabilization of high density polyethylene during multiple extrusions. Polym Degrad Stabil 25(2):217–245. https://doi.org/10.1016/s0141-3910(89)81009-2

    Article  CAS  Google Scholar 

  8. Golestanzadeh M, Naeimi H, Zahraie Z (2017) Synthesis and antioxidant activity of star-shape phenolic antioxidants catalyzed by acidic nanocatalyst based on reduced graphene oxide. Biomater Adv 71:709–717. https://doi.org/10.1016/j.msec.2016.10.065

    Article  CAS  Google Scholar 

  9. Xu XQ, Liu AM, Hu SY, Ares I, Martínez-Larrañaga M, Wang X, Martínez M, Anadón A, Martínez M (2021) Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem 353:129488. https://doi.org/10.1016/j.foodchem.2021.129488

    Article  CAS  PubMed  Google Scholar 

  10. Nagarajan S, Nagarajan R, Kumar J, Salemme A, Togna AR, Saso L, Bruno F (2020) Antioxidant activity of synthetic polymers of phenolic compounds. Polymers 12:1646. https://doi.org/10.3390/polym12081646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brocca D, Arvin E, Mosbaek H (2002) Identification of organic compounds migrating from polyethylene pipelines into drinking water. Water Res 36(15):3675–3680. https://doi.org/10.1016/s0043-1354(02)00084-2

    Article  CAS  PubMed  Google Scholar 

  12. Liu IC, Chuang CK, Tsiang RCC (2004) Foaming of electron-beam irradiated LDPE blends containing recycled polyethylene foam. J Polym Res 11(2):149–159. https://doi.org/10.1023/B:JPOL.0000031081.29087.2f

    Article  CAS  Google Scholar 

  13. Sui K, Mei F, Li X, Wang ZF, Wang ZW, Han YX, Yu Q, Cheng GQ (2022) Forsythia suspensa extract obtained from traditional Chinese herbal medicine as an efficient natural antioxidant for polyethylene. J Polym Res 29(11):494. https://doi.org/10.1007/s10965-022-03340-8

    Article  CAS  Google Scholar 

  14. Samper MD, Fages E, Fenollar O, Boronat T, Balart R (2013) The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. J Appl Polym Sci 129(4):1707–1716. https://doi.org/10.1002/app.38871

    Article  CAS  Google Scholar 

  15. Tátraaljai D, Kirschweng B, Kovács J, Földes E, Pukánszky B (2013) Processing stabilisation of PE with a natural antioxidant, curcumin. Eur Polym J 49(6):1196–1203. https://doi.org/10.1016/j.eurpolymj.2013.02.018

    Article  CAS  Google Scholar 

  16. Zaharescu T, Jipa S, Mariş DA, Mariş M, Kappel W (2009) Effect of rosemary extract on the radiation stability of UHMWPE. e-Polymers 9(1):149. https://doi.org/10.1515/epoly.2009.9.1.1772

    Article  Google Scholar 

  17. Ambrogi V, Cerruti P, Carfagna C, Malinconico M, Marturano V, Perrotti M, Persico P (2011) Natural antioxidants for polypropylene stabilization. Polym Degrad Stabil 96(12):2152–2158. https://doi.org/10.1016/j.polymdegradstab.2011.09.015

    Article  CAS  Google Scholar 

  18. Zhao QQ, Li J, Wu B, Shang YH, Huang XY, Dong H, Liu HT, Gui R, Nie XM (2020) A nano-traditional chinese medicine against lymphoma that regulates the level of reactive oxygen species. Front Chem 8:565. https://doi.org/10.3389/fchem.2020.00565

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang R, Luo JG, Kong LY (2012) Screening of radical scavengers in Scutellaria baicalensis using HPLC with diode array and chemiluminescence detection. J Sep Sci 35(17):2223–2227. https://doi.org/10.1002/jssc.201200156

    Article  CAS  PubMed  Google Scholar 

  20. Syafni N, Devi S, Zermann-Klemd AM, Reinhardt JK, Danton O, Gründemann C, Hamburger M (2021) Immunosuppressant flavonoids from Scutellaria baicalensis. Biomed Pharmacotherapy 144:112326. https://doi.org/10.1016/j.biopha.2021.112326

    Article  CAS  Google Scholar 

  21. Wang YQ, Zhuang G, Li SJ, Pharmaceut J (2018) Multiple on-line screening and identification methods for hydroxyl radical scavengers in Yudanshen. Biomed 156:278–283. https://doi.org/10.1016/j.jpba.2018.04.043

    Article  CAS  Google Scholar 

  22. Kirschweng B, Tátraaljai D, Földes E, Pukánszky B (2017) Natural antioxidants as stabilizers for polymers. Polym Degrad Stabil 145:25–40. https://doi.org/10.1016/j.polymdegradstab.2017.07.012

    Article  CAS  Google Scholar 

  23. Tátraaljai D, Földes E, Pukánszky B (2014) Efficient melt stabilization of polyethylene with quercetin, a flavonoid type natural antioxidant. Polym Degrad Stabil 102:41–48. https://doi.org/10.1016/j.polymdegradstab.2014.02.010

    Article  CAS  Google Scholar 

  24. Kirschweng B, Bencze K, Sárközi M, Hégely B, Gy S, Hári J, Tátraaljai D, Földes E, Kállay M, Pukánszky B (2016) Melt stabilization of polyethylene with dihydromyricetin, a natural antioxidant. Polym Degrad Stabil 133:192–200. https://doi.org/10.1016/j.polymdegradstab.2016.08.016

    Article  CAS  Google Scholar 

  25. Kirschweng B, Vörös B, Tátraaljai D, Zsuga M, Földes E, Pukánszky B (2017) Natural antioxidants as melt stabilizers for PE: Comparison of silymarin and quercetin. Eur Polym J 90:456–466. https://doi.org/10.1016/j.eurpolymj.2017.03.041

    Article  CAS  Google Scholar 

  26. Gao Z, Huang K, Yang X, Xu H (1999) Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. BBA Gen Subj 1472(3):643–650. https://doi.org/10.1016/s0304-4165(99)00152-x

    Article  CAS  Google Scholar 

  27. Woźniak D, Dryś A, Matkowski A (2015) Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix. Nat Prod Res 29(16):1567–1570. https://doi.org/10.1080/14786419.2014.983920

    Article  CAS  PubMed  Google Scholar 

  28. Woźniak D, Lamer-Zarawska E, Matkowski A (2004) Antimutagenic and antiradical properties of flavones from the roots of Scutellaria baicalensis Georgi. Food Nahrung 48(1):9–12. https://doi.org/10.1002/food.200200230

    Article  CAS  Google Scholar 

  29. Tettey CO, Shin HM (2019) Evaluation of the antioxidant and cytotoxic activities of zinc oxide nanoparticles synthesized using scutellaria baicalensis root. Sci Afr 6:e00157. https://doi.org/10.1016/j.sciaf.2019.e00157

    Article  Google Scholar 

  30. Shao ZH, Hoek TLV, Li CQ, Schumacker PT, Becker LB, Chan KC, Qin YM, Yin JJ, Yuan CS (2004) Synergistic effect of scutellaria baicalensis and grape seed proanthocyanidins on scavenging reactive oxygen species in vitro. Am J Chin Med 32(01):89–95. https://doi.org/10.1142/s0192415x04001722

    Article  CAS  PubMed  Google Scholar 

  31. Fang ZT, Yang WT, Li CY, Li D, Dong JJ, Zhao D, Xu HR, Ye JH, Zheng XQ, Liang YR, Lu JL (2021) Accumulation pattern of catechins and flavonol glycosides in different varieties and cultivars of tea plant in China. J Food Compos Anal 97:103772. https://doi.org/10.1016/j.jfca.2020.103772

    Article  CAS  Google Scholar 

  32. Mellor DC, Moir AB, Scott G (1973) The effect of processing conditions on the u.v. stability of polyolefins. Eur Polym J 9(3):219–225. https://doi.org/10.1016/0014-3057(73)90129-8

    Article  CAS  Google Scholar 

  33. Almond J, Sugumaar P, Wenzel MN, Hill G, Wallis C, Sugumaar P, Wenzel MN, Hill G, Wallis C (2020) Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers 20(1):369–381. https://doi.org/10.1515/epoly-2020-0041

    Article  CAS  Google Scholar 

  34. Petchwattana N, Covavisaruch S, Chanakul S (2012) Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene. J Polym Res 19(7):9921. https://doi.org/10.1007/s10965-012-9921-6

    Article  CAS  Google Scholar 

  35. Leopoldini M, Russo N, Toscano M (2011) The molecular basis of working mechanism of natural polyphenolic antioxidant. Food Chem 125(2):288–306. https://doi.org/10.1016/j.foodchem.2010.08.012

    Article  CAS  Google Scholar 

  36. Reingruber E, Buchberger W (2010) Analysis of polyolefin stabilizers and their degradation products. J Sep Sci 33(22):3463–3475. https://doi.org/10.1002/jssc.201000493

    Article  CAS  PubMed  Google Scholar 

  37. Allen NS, Edge M (2021) Perspectives on additives for polymers. 1. Aspects of stabilization. J Vinyl Addit Technol 27(1):5–27. https://doi.org/10.1002/vnl.21807

    Article  CAS  Google Scholar 

  38. Porfyris AD, Vouyiouka SN, Luyt AS, Korres DM, Malik SS, Gasmi S, Grosshauser M, Pfaendner R, Papaspyrides CD (2021) Development of value-added polyethylene grades with extended service lifetime: Weathering resistant flame retarded materials for outdoor applications. J Appl Polym Sci 138(19):50370. https://doi.org/10.1002/app.50370

    Article  CAS  Google Scholar 

  39. Mensah RA, Shanmugam NS, Renner JS, Babu K, Neisiany RE, Försth M, Sas G, Das O (2022) A review of sustainable and environment-friendly flame retardants used in plastics. Polym Test 108:107511. https://doi.org/10.1016/j.polymertesting.2022.107511

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2020LFG002, ZR2020QB023), the Foundation of 2019 Science and Technology Projects of Qingdao West Coast New District [grant number: 2019–18], and the Research Foundation of Qingdao Fusilin Chemical Science &Technology Co., Ltd. (FSL-RF 2019).

Author information

Authors and Affiliations

Authors

Contributions

Chengchao Liu: Data curation (Lead); Formal analysis (Lead); Investigation (Equal); Writing - original draft (Lead). Kun Sui: Investigation (Equal); Writing - original draft (Equal). Jiuhong Liu: Data curation (Equal). Zhongwei Wang: Funding acquisition (Lead). Project administration (Lead). Long Chen: Writing – review & editing (Lead). Qing Yu: Funding acquisition (Lead). Writing - review & editing (Lead).

Corresponding authors

Correspondence to Long Chen or Qing Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Sui, K., Liu, J. et al. Natural multi-function additive for linear low-density polyethylene: Scutellarin baicalensis extractive. J Polym Res 31, 56 (2024). https://doi.org/10.1007/s10965-024-03902-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03902-y

Keywords

Navigation