Skip to main content
Log in

A simple strategy for synthesis of side-chain sulfonated poly(arylene ether ketone sulfone) constructing hydrophilic/ hydrophobic phase separation structure

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of poly(aryl ether ketone sulfone) polymers (C-PAEKS-DBS) were synthesized from 4-carboxyphenyl hydroquinone, allyl bisphenol S, and 4,4-difluorobenzophenone by nucleophilic polycondensation. And further a series of side chain sulfonated poly(aryl ether ketone sulfone) proton exchange membranes (CPDA-x) were prepared by simply introducing hydrophilic long alkyl side chains (AMPS) into the polymers by means of double bond cross-linking. The structure of the prepared CPDA-x were characterized by FT-IR, 1H NMR and SEM. This series of composite membranes showed excellent dimensional stability which including moderate water absorption (ranging from 27.91% to 33.33% at 80 °C) and low swelling ratio (ranging from 10.26% to 16.67% at 80 °C). In addition, the prepared films also exhibited high oxidative stability and mechanical property. This simple strategy for the producing of proton exchange membranes (PEMs) has certain potential and may be applied to the producing of fuel cell membranes with hydrophilic and hydrophobic phase separation structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Jiao K, Xuan J, Du Q, Bao Z, Xie B, Wang B (2021) Designing the next generation of proton-exchange membrane fuel cells. Nature 595:361–369

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Lee KH, Chu JY, Mohanraj V, Kim AR, Song MH, Yoo DJ (2020) Enhanced ion conductivity of sulfonated poly (arylene ether sulfone) block copolymers linked by aliphatic chains constructing wide-range ion cluster for proton conducting electrolytes. Int J Hydrogen Energy 45:29297–29307

    Article  CAS  Google Scholar 

  3. Wang YC, Chu FL, Zeng J, Wang QJ, Naren TY, Li YY, Cheng Y, Lei YP, Wu FX (2021) Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS Nano 15:210–239

    Article  CAS  PubMed  Google Scholar 

  4. Liu C, Wang X, Xu JM, Wang CM, Chen H, Liu WC, Du XM, Wang S, Wang Z (2020) PEMs with high proton conductivity and excellent methanol resistance based on sulfonated poly (aryl ether ketone sulfone) containing comb-shaped structures for DMFCs applications. Int J Hydrogen Energy 45:945–957

    Article  CAS  Google Scholar 

  5. Tang Z, Huang QA, Wang YJ (2020) Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance. J Power Sources 468:228361

    Article  CAS  Google Scholar 

  6. Chen D, Pei P, Li Y (2022) Proton exchange membrane fuel cell stack consistency: Evaluation methods, influencing factors, membrane electrode assembly parameters and improvement measures. Energy Convers Manage 261:115651

    Article  CAS  Google Scholar 

  7. Qu E, Hao X, Xiao M (2022) Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives. J Power Sources 533:231386

    Article  CAS  Google Scholar 

  8. Holdcroft S (2014) Fuel cell catalyst layers: a polymer science perspective. Chem Mater 26:381–393

    Article  CAS  Google Scholar 

  9. Xu JM, Cheng HL, Ma L, Han HL, Wang Z (2014) Preparation and behavior of “molecular compound” through covalent crosslinking between amino and sulfonic groups in single copolymers. J Polym Res 21:1–11

    Article  Google Scholar 

  10. Xu MH, Xue H, Wang QF, Jia LC (2021) Sulfonated poly (arylene ether) s based proton exchange membranes for fuel cells. Int J Hydrogen Energy 46:31727–31753

    Article  CAS  Google Scholar 

  11. Ru CY, Li ZH, Zhao CJ, Duan YT, Zhuang Z, Bu FZ, Na H (2018) Enhanced proton conductivity of sulfonated hybrid poly (arylene ether ketone) membranes by incorporating an amino–sulfo bifunctionalized metal–organic framework for direct methanol fuel cells. ACS Appl Mater interfaces 10:7963–7973

    Article  CAS  PubMed  Google Scholar 

  12. Zhang DQ, Yan LM, Yue BH, Hu YD, Wang ZM, Lv WM, Wang H (2021) Coarse-grained hybrid Monte Carlo/molecular dynamics simulations of the nanophase separated morphology of polysulfone grafted with phosphonated sidechain for proton exchange membrane fuel cells. Int J Hydrogen Energy 46:26402–26414

    Article  CAS  Google Scholar 

  13. Jia W, Tang BB, Wu PY (2017) Novel composite proton exchange membrane with connected long-range ionic nanochannels constructed via exfoliated nafion–boron nitride nanocomposite. ACS Appl Mater Interfaces 9:14791–14800

    Article  CAS  PubMed  Google Scholar 

  14. Zhang ZG, Ren JH, Xu JM (2021) Enhanced proton conductivity of sulfonated poly (arylene ether ketone sulfone) polymers by incorporating phosphotungstic acid-ionic-liquid-functionalized metal-organic framework. J Membrane Sci 630:119304

    Article  CAS  Google Scholar 

  15. Duan XQ, Zhao J, Song D (2021) Preparation and investigation on the low temperature proton exchange membranes with the enhanced proton conductivity at subzero temperature. J Mol Liq 328:115377

    Article  CAS  Google Scholar 

  16. Yang X, Kim JH, Kim YJ (2022) Enhanced proton conductivity of poly (ether sulfone) multi-block copolymers grafted with densely pendant sulfoalkoxyl side chains for proton exchange membranes. Polymer 242:124604

    Article  CAS  Google Scholar 

  17. Kim J, Han JS, Kim H, Kim K, Lee H, Kim E, Choi W, Lee JC (2022) Thermally cross-linked sulfonated poly(ether ether ketone) membranes containing a basic polymer-grafted graphene oxide for vanadium redox flow battery application. J Energy Storage 45:103784

    Article  Google Scholar 

  18. Liu X, Li Y, Li MY, Xie N, Zhang JF, Qin YZ, Yin Y, Guiver MD (2021) Durability enhancement of proton exchange membrane fuel cells by ferrocyanide or ferricyanide additives. J Membrane Sci 629:119282

    Article  CAS  Google Scholar 

  19. Le PL, Singh B, Chen YS, Arpom wichanop A, (2021) An experimental study for optimizing the energy efficiency of a proton exchange membrane fuel cell with an open-cathode. Int J Hydrogen Energy 46:26507–26517

    Article  CAS  Google Scholar 

  20. Ru CY, Gu YY, Duan YT, Na H, Zhao CJ (2019) Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs. Electrochim Acta 324:134873

    Article  CAS  Google Scholar 

  21. He Y, Wang JT, Zhang HQ, Zhang T, Zhang B, Cao SK, Liu JD (2014) Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J Mater Chem A 2:9548–9558

    Article  CAS  Google Scholar 

  22. Haragirimana A, Li N, Hu ZX, Chen SW (2021) A facile, effective thermal crosslinking to balance stability and proton conduction for proton exchange membranes based on blend sulfonated poly (ether ether ketone)/sulfonated poly (arylene ether sulfone). Int J Hydrogen Energy 46:15866–15877

    Article  CAS  Google Scholar 

  23. Zhu BS, Sui Y, Wei P, Wen JH, Cao H, Cong CB, Meng XY, Zhou Q (2021) NH2-UiO-66 coated fibers to balance the excellent proton conduction efficiency and significant dimensional stability of proton exchange membrane. J Membrane Sci 628:119214

    Article  CAS  Google Scholar 

  24. Ban T, Guo ML, Wang YJ, Wang YN, Zhang YY, Zhang JS, Zhu XL (2021) Densely functionalized proton exchange membrane from sulfonated poly (aryl ether ketone) containing multiple flexible side chains for fuel cell. Solid State Ion 372:115777

    Article  CAS  Google Scholar 

  25. Xu JM, Cheng HL, Ma L, Han HL, Wang Z (2013) Construction of a new continuous proton transport channel through a covalent crosslinking reaction between carboxyl and amino groups. Int J Hydrogen Energy 38:10092–10103

    Article  CAS  Google Scholar 

  26. Qian PH, Wang HX, Zhang L, Zhou Y, Shi HF (2022) An enhanced stability and efficiency of speek-based composite membrane influenced by amphoteric side-chain polymer for vanadium redox flow battery. J Membrane Sci 643:120011

    Article  CAS  Google Scholar 

  27. Khan ML, Shanableh A, Shahida S, Lashari MH, Manzoor S, Fernandez J (2022) SPEEK and SPPO blended membranes for proton exchange membrane fuel cells. Membranes 12:263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim SH, Lee KH, Chu JY, Kim AR, Yoo D (2020) J Enhanced hydroxide conductivity and dimensional stability with blended membranes containing hyperbranched PAES/linear PPO as anion exchange membranes. Polymers 12:3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan XM, Dong ZW, Di MT, Hu L, Zhang CM, Pan Y, Wang JY, He GH (2020) A highly proton-conductive and vanadium-rejected long-side-chain sulfonated polybenzimidazole membrane for redox flow battery. J Membrane Sci 596:117616

    Article  CAS  Google Scholar 

  30. Zuo PP, Li YY, Wang AQ, Tan R, Liu YH, Liang X, Yang ZJ, Xu TW (2020) Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage. Angew Chem Int Edi 59:9564–9573

    Article  CAS  Google Scholar 

  31. Sun YR, Sun T, Pang JH, Cao N, Yue C, Wang J, Han XC, Jiang ZH (2021) Poly (aryl ether ketone) membrane with controllable degree of sulfonation for organic solvent nanofiltration. Separ and Pur Technology 273:118956

    Article  CAS  Google Scholar 

  32. Feng SN, Wang GB, Zhang HB, Pang JH (2015) Graft octa-sulfonated poly(arylene ether) for high performance proton exchange membrane. J Mater Chem A 3:12698–12708

    Article  CAS  Google Scholar 

  33. Pan T, Yue BH, Yan LM, Zeng GB, Hu YD, He SF, Lu W, Zhao HB, Zhang JJ (2020) N, N-bis(sulfopropyl)aminyl-4-phenyl polysulfone and O, O ’-bis(sulfopropyl)resorcinol-5-yl-4-phenyl polysulfone composite membrane for proton exchange membrane fuel cells. Int J Hydrogen Energy 45:23490–23503

    Article  CAS  Google Scholar 

  34. Zeng GB, Zhang DQ, Yan LM, Yue BH, Pan T, Hu YD, He SF, Zhao HB, Zhang JJ (2021) Design and synthesis of side-chain optimized poly(2,6-dimethyl-1,4-phenylene oxide)-g-poly(styrene sulfonic acid) as proton exchange membrane for fuel cell applications: balancing the water-resistance and the sulfonation degree. Int J Hydrogen Energy 46:20664–20677

    Article  CAS  Google Scholar 

  35. Ghorai A, Banerjee S (2023) Phosphorus-containing aromatic polymers: Synthesis, structure, properties and membrane-based applications. Pro Polym Sci 101646

    Article  Google Scholar 

  36. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41

    Google Scholar 

  37. Qi Y, Weng ZH, Kou Y, Song LQ, Li JH, Wang JY, Zhang SH, Liu C, Jian XG (2021) Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chem Eng J 406:126881

    Article  CAS  Google Scholar 

  38. Du XM, Zhang HY, Yuan YJ, Wang Z (2021) Constructing micro-phase separation structure to improve the performance of anion-exchange membrane based on poly (aryl piperidinium) cross-linked membranes. J Power Sources 487:229429

    Article  CAS  Google Scholar 

  39. Wang XQ, Lammertink R (2022) Dimensionally stable multication-crosslinked poly (arylene piperidinium) membranes for water electrolysis. J Mater Chem A 10:8401–8412

    Article  CAS  Google Scholar 

  40. Chen X, Lü H, Lin Q, Zhang X, Chen D, Zheng Y (2018) Partially fluorinated poly (arylene ether) s bearing long alkyl sulfonate side chains for stable and highly conductive proton exchange membranes. J Membrane Sci 549:12–22

    Article  CAS  Google Scholar 

  41. Cai SJ, Wang CY, Tao ZW, Qian JF, Zhao XY, Li J, Ren Q (2022) Proton exchange membranes containing densely alkyl sulfide sulfonated side chains for vanadium redox flow battery. Int J Hydrogen Energy 47:9319–9330

    Article  CAS  Google Scholar 

  42. Ban T, Guo ML, Wang YJ, Zhang YY, Zhu XL (2023) High-performance aromatic proton exchange membranes bearing multiple flexible pendant sulfonate groups: Exploring side chain length and main chain polarity. J Membrane Sci 668:121255

    Article  CAS  Google Scholar 

  43. Liang J, Ge J, Wu K, Zhang Q, Wang JL, Ye ZB (2020) Sulfonated polyaryletherketone with pendant benzimidazole groups for proton exchange membranes. J Membrane Sci 597:117626

    Article  CAS  Google Scholar 

  44. Xu JM, Wang Z, Zhang HX, Ni HZ, Luo XY, Liu BX (2016) Direct polymerization of novel functional sulfonated poly(arylene ether ketone sulfone)/sulfonated poly(vinyl alcohol) with high selectivity for fuel cells. RSC Adv 6:27725–27737

    Article  ADS  CAS  Google Scholar 

  45. Zhang ZG, Ren JH, Ju MC, Chen X, Xu JM, Wang Z (2021) Construction of new alternative transmission sites by incorporating structure-defect metal-organic framework into sulfonated poly (arylene ether ketone sulfone)s. Int J Hydrogen Energy 46:27193–27206

    Article  CAS  Google Scholar 

  46. Ju MC, Shi QY, Xu JM, Chen X, Ren JH, Lei JX, Meng LX, Zhao PY, Wang Z (2022) Construction of effective transmission channels by anchoring metal-organic framework on side-chain sulfonated poly (arylene ether ketone sulfone) for fuel cells. Int J Energy Res 46:11123–11138

    Article  CAS  Google Scholar 

  47. Carbone A, Zignani SC, Gatto I, Trocino S, Aricò AS (2020) Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis. Int J Hydrogen Energy 45:9285–9292

    Article  CAS  Google Scholar 

  48. Duan YT, Ru CY, Li JL, Sun YN, Pu XT, Liu BH, Pang BH, Zhao CJ (2022) Enhancing proton conductivity and methanol resistance of SPAEK membrane by incorporating MOF with flexible alkyl sulfonic acid for DMFC. J Membrane Sci 641:119906

    Article  CAS  Google Scholar 

  49. Chen X, Shi QY, Xu JM, Ju MC, Lei JX, Wang Z (2022) Enhanced proton conductivity of poly (arylene ether ketone sulfone) containing uneven sulfonic acid side chains by incorporating imidazole functionalized metal-organic framework. Int J Hydrogen Energy 47:7443–7457

    Article  CAS  Google Scholar 

  50. Zhang X, Li ZW, Chen XL, Chen DY, Zheng YY (2020) Side chain engineering of sulfonated poly (arylene ether)s for proton exchange membranes. J Polym Sci 38:644–652

    CAS  Google Scholar 

  51. Xu JM, Meng LX, Shi QY, Ren Q, Wang Z (2022) Long-side chains functionalized cross-linked sulfonated poly (ether ketone sulfone) s as proton exchange membranes. J Polym Res 29:482

    Article  CAS  Google Scholar 

  52. Pan MZ, Pan CJ, Li C, Zhao J (2021) A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability. Renew Sustain Energy Revi 141:110771

    Article  CAS  Google Scholar 

  53. Shi J, Shan YH, Tian Y, Wan Y, Zheng YT, Feng YY (2016) Hydrophilic sulfonic acid-functionalized micro-bead silica for dehydration of sorbitol to isosorbide. RSC Adv 6:13514–13521

    Article  ADS  CAS  Google Scholar 

  54. Cui MB, Zhang ZH, Yuan T, Yang H, Wu L, Bakangura E, Xu TW (2014) Proton-conducting membranes based on side-chain-type sulfonated poly (ether ketone/ether benzimidazole)s via one-pot condensation. J Membrane Sci 465:100–106

    Article  CAS  Google Scholar 

  55. Wu B, Lin XC, Ge L, Wu L, Xu TW (2013) A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks. Chem Commun 49:143–145

    Article  CAS  Google Scholar 

  56. Gu S, He GH, Wu XM, Hu ZW, Wang LL, Xiao GK, Peng L (2009) Preparation and characterization of poly (vinylidene fluoride)/sulfonated poly (phthalazinone ether sulfone ketone) blends for proton exchange membrane. J Appl Polym Sci 116:852–860

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from National Natural Science Foundation of China (grant no. 51803011, 22075031), Jilin Province People’s Government Department of Education (grant no. JJKH20230747KJ) and Natural Science Foundation of Jilin Province (Jilin Province Natural Science Foundation) (grant no. 20210101071JC).

Funding

National Natural Science Foundation of China,51803011,Jingmei Xu,22075031,Jingmei Xu,Jilin Province People’s Government Department of Education,JJKH20230747KJ,Jingmei Xu,Natural Science Foundation of Jilin Province (Jilin Province Natural Science Foundation),20210101071JC,Jingmei Xu

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingmei Xu.

Ethics declarations

Conflicts of interest

All the authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Meng, L., Zhao, P. et al. A simple strategy for synthesis of side-chain sulfonated poly(arylene ether ketone sulfone) constructing hydrophilic/ hydrophobic phase separation structure. J Polym Res 31, 52 (2024). https://doi.org/10.1007/s10965-024-03894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03894-9

Keywords

Navigation