Skip to main content

Advertisement

Log in

Strong, self-healing and flame-retardant elastomer composite based on epoxidized natural rubber, polylactic acid, chitosan and guanidine phosphate

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

With the rapid development of society, polymer materials are widely used in automotive, construction, and electronic components due to their excellent properties such as easy processing, cheap price, and corrosion resistance. However, most polymers, such as rubber and leather, suffer from poor mechanical properties, susceptibility to micro cracking and flammability. In this paper, an epoxidized natural rubber (ENR)/polylactic acid (PLA)/chitosan (CS)/guanidine phosphate (GP) composites with certain self-healing and flame-retardant properties are successfully prepared. The network structure is constructed by forming thermoplastic elastomers (TVPs) through ENR and PLA, and the amino groups on CS and GP can form hydrogen bonds with ENR, which improves the mechanical properties of ENR/PLA composites and gives the ENR/PLA/CS/GP composites excellent self-healing properties. Meanwhile, CS and GP can also form intumescent flame retardants to improve the flame-retardant properties of ENR/PLA composites. The results show that the mechanical strength of ENR/ PLA /CS/GP composites can reach 4.2 MPa when the addition of CS and GP is 2phr and 4phr, respectively. The self-healing effectiveness of the ENR/PLA/CS/GP composite reaches up to 78% after 3 h at 130 °C. The stress intensity of the original ENR/PLA composite is 3.4Mpa, and that of healing ENR/PLA/CS/GP composite is 3.3Mpa. Meanwhile, the peak heat release rate (HRR) of ENR/PLA could decease 35.8% owing to 2phr CS and 4phr GP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Masek A, Zaborski M (2014) ENR/PCL polymer biocomposites from renewable resources. C R Chim 17(9):944–951. https://doi.org/10.1016/j.crci.2013.10.008

    Article  CAS  Google Scholar 

  2. Ravanbakhsh M, Khorasani SN, Khalili S (2016) Blending of NR/BR/ENR/EPDM-g-GMA by reactive processing for tire sidewall applications: effects of grafting and ENR on curing characteristics, mechanical properties, and dynamic ozone resistance. J Elastomers Plast 48(5):394–403. https://doi.org/10.1177/0095244315580453

    Article  CAS  Google Scholar 

  3. Gong Z, Huang JR, Cao LM, Xu CH, Chen YK (2022) Self-healing epoxidized natural rubber with ionic/coordination crosslinks. Mater Chem Phys 285:126063. https://doi.org/10.1016/j.matchemphys

    Article  CAS  Google Scholar 

  4. Tan WL, Salehabadi A, Mohd Isa MH, Abu Bakar M, Abu Bakar NHH (2015) Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: a potential flame-resistant adhesive. J Mater Sci 51:1121–1132. https://doi.org/10.1007/s10853-015-9443-9

    Article  CAS  Google Scholar 

  5. Wang SY, Liu QH, Li L, Urban MW (2021) Recent advances in stimuli-responsive commodity polymers. Macromol Rapid Commun 42(18):2100054. https://doi.org/10.1002/marc.202100054

    Article  CAS  Google Scholar 

  6. Ilyas RA, Zuhri MYM, Aisyah HA, Asyraf MRM, Hassan SA, Zainudin ES (2022) Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polym (Basel) 14(1):202. https://doi.org/10.3390/polym14010202

    Article  CAS  Google Scholar 

  7. More N, Avhad M, Utekar S, More A (2022) Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polym Bull 80(2):1117–1153. https://doi.org/10.1007/s00289-022-04135-z

    Article  CAS  Google Scholar 

  8. Vatanpour V, Dehqan A, Paziresh S, Zinadini S, Zinatizadeh AA, Koyuncu I (2022) Polylactic acid in the fabrication of separation membranes: a review. Sep Purif Technol 296:121433. https://doi.org/10.1016/j.seppur.2022.121433

    Article  CAS  Google Scholar 

  9. Nie DL, Yin XZ, Cai ZQ, Wang JT (2022) Effect of crystallization on shape memory effect of poly(lactic acid). Polym (Basel) 14(8):1569. https://doi.org/10.3390/polym14081569

    Article  CAS  Google Scholar 

  10. Cao LM, Liu C, Zou DJ, Zhang SD, Chen YK (2022) Using cellulose nanocrystals as sustainable additive to enhance mechanical and shape memory properties of PLA/ENR thermoplastic vulcanizates. Carbohydr Polym 230:115618. https://doi.org/10.1016/j.carbpol.2019.115618

    Article  CAS  Google Scholar 

  11. Liu W, Ding JP, Chen YK (2022) Thermoplastic vulcanizates dynamically cross-linked by a tailored small molecule. Polym Adv Technol 33(10):3418–3429. https://doi.org/10.1002/pat.5793

    Article  CAS  Google Scholar 

  12. Musa L, Krishna Kumar N, Abd Rahim SZ, Mohamad Rasidi MS, Watson Rennie AE, Rahman R (2022) A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling. J Mater Res Technol 20:2841–2858. https://doi.org/10.1016/j.jmrt.2022.08.057

    Article  CAS  Google Scholar 

  13. Xu XH, Ma LF, Liu CC (2022) Bio-based polylactic acid or epoxy natural rubber thermoplastic vulcanizates with dual interfacial compatibilization networks. Polym Eng Sci 62(6):1987–1998. https://doi.org/10.1002/pen.25981

    Article  CAS  Google Scholar 

  14. Das P, Katheria A, Ghosh S, Roy B, Nayak J, Nath K, Paul S, Das NC (2023) Self-healable and super-stretchable conductive elastomeric nanocomposites for efficient thermal management characteristics and electromagnetic interference shielding. Synth Met 294:117304. https://doi.org/10.1016/j.synthmet.2023.117304

    Article  CAS  Google Scholar 

  15. Jia CH, Zhang P, Seraji SM, Xie RS, Chen L, Liu D, Xiong Y, Chen H, Fu YK, Xu HL, Song PA (2022) Effects of BN/GO on the recyclable, healable and thermal conductivity properties of ENR/PLA thermoplastic vulcanizates. Compos Part A Appl Sci Manuf 152:106686. https://doi.org/10.1016/j.compositesa.2021.106686

    Article  CAS  Google Scholar 

  16. Huang JR, Cao LM, Yuan DS, Chen YK (2018) Design of novel self-healing thermoplastic vulcanizates utilizing thermal/magnetic/light-triggered shape memory effects. ACS Appl Mater Interfaces 10(48):40996–41002. https://doi.org/10.1021/acsami.8b18212

    Article  CAS  PubMed  Google Scholar 

  17. Jeong SH, Park CH, Song H, Heo JH, Lee JH (2022) Biomolecules as green flame retardants: recent progress, challenges, and opportunities. J Clean Prod 368:133241. https://doi.org/10.1016/j.jclepro.2022.133241

    Article  CAS  Google Scholar 

  18. Wan L, Deng C, Zhao ZY, Chen H, Wang YZ (2020) Flame retardation of natural rubber: strategy and recent progress. Polym (Basel) 12(2):429. https://doi.org/10.3390/polym12020429

    Article  CAS  Google Scholar 

  19. Bevington C, Williams AJ, Guider C, Baker NC, Meyer B, Babich MA (2022) Development of a flame retardant and an organohalogen flame retardant chemical inventory. Sci Data 9(1):295. https://doi.org/10.1038/s41597-022-01351-0

    Article  PubMed Central  Google Scholar 

  20. Kudashev SV, Medvedev VP (2018) Composites of reduced flammability based on amorphous elastic polyurethane and halogen-containing flame retardant. Russ J Appl Chem 91(3):520–523. https://doi.org/10.1134/S1070427218030266

    Article  CAS  Google Scholar 

  21. Jin E, Chung YJ (2020) Fire risk assessment of cypress wood coated with metal oxide and metal silicate flame retardant using cone calorimeter. J Fire Sci 38(6):504–521. https://doi.org/10.1177/0734904120948215

    Article  CAS  Google Scholar 

  22. Mu XW, Xiao YL, Cai W, Yulu Z, Wang W, Li XJ, Wang X, Song L (2022) Hierarchical core-shell SiO(2)@COFs@metallic oxide architecture: an efficient flame retardant and toxic smoke suppression for polystyrene. J Colloid Interface Sci 605:241–252. https://doi.org/10.1016/j.jcis.2021.07.100

    Article  CAS  PubMed  Google Scholar 

  23. Przybylak M, Maciejewski H, Dutkiewicz A, Wesolek D, Wladyka-Przybylak M (2016) Multifunctional, strongly hydrophobic and flame-retarded cotton fabrics modified with flame retardant agents and silicon compounds. Polym Degrad Stab 128:55–64. https://doi.org/10.1016/j.polymdegradstab.2016.03.003

    Article  CAS  Google Scholar 

  24. Zielecka M, Rabajczyk A, Pastuszka L, Jurecki L (2020) Flame resistant silicone-containing coating materials. Coatings 10(5):479. https://doi.org/10.3390/coatings10050479

    Article  CAS  Google Scholar 

  25. Vahidi G, Bajwa DS, Shojaeiarani J, Stark N, Darabi A (2020) Advancements in traditional and nanosized flame retardants for polymers—a review. J Appl Polym Sci 138(12):50050. https://doi.org/10.1002/app.50050

    Article  CAS  Google Scholar 

  26. Wang J, Guo Y, Zhao SP, Huang RY, Kong XJ (2020) A novel intumescent flame retardant imparts high flame retardancy to epoxy resin. Polym Adv Technol 31(5):932–940. https://doi.org/10.1002/pat.4827

    Article  CAS  Google Scholar 

  27. Wang LY, Wei Y, Deng HB, Lyu RQ, Zhu JJ, Yang YB (2021) Synergistic flame retardant effect of barium phytate and intumescent flame retardant for epoxy resin. Polym (Basel) 13(17):2009. https://doi.org/10.3390/polym13172900

    Article  CAS  Google Scholar 

  28. Huang Z, Li SH, Tsai LC, Jiang T, Ma N, Tsai FC (2022) Flame retardant polypropylene with a single molecule intumescent flame retardant based on chitosan. Mater Today Commun 33:104689. https://doi.org/10.1016/j.mtcomm.2022.104689

    Article  CAS  Google Scholar 

  29. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R Rep 63(3):100–125. https://doi.org/10.1016/j.mser.2008.09.002

    Article  CAS  Google Scholar 

  30. Bourbigot S, Le Bras M, Duquesne S, Rochery M (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289(6):499–511. https://doi.org/10.1002/mame.200400007

    Article  CAS  Google Scholar 

  31. Huang Z, Ruan B, Wu J, Ma N, Jiang T, Tsai FC (2020) High-efficiencyammonium polyphosphate intumescent encapsulated polypropylene flame retardant. J Appl Polym Sci 138(20):50431. https://doi.org/10.1002/app.50413

    Article  CAS  Google Scholar 

  32. Gao S, Liu GS (2018) Synthesis of amino trimethylene phosphonic acid melamine salt and its application in flame-retarded polypropylene. J Appl Polym Sci 135:46274. https://doi.org/10.1002/app.46274

    Article  CAS  Google Scholar 

  33. Guo XR, Geng JT, Sun B, Xu Q, Li YB, Xie SW, Xue YY, Yan H (2020) Great enhancement of efficiency of intumescent flame retardants by titanate coupling agent and polysiloxane. Polym Adv Technol 32:41–53. https://doi.org/10.1002/pat.5059

    Article  CAS  Google Scholar 

  34. Das P, Katheria A, Naskar K, Das NC (2023) Recyclable and super-stretchable conductive elastomeric composites with a carbon nanostructure interconnected network structure for effective thermal management and excellent electromagnetic wave suppressor. Polym Plast Technol Eng 62(7):889. https://doi.org/10.1080/25740881.2023.2169160

    Article  CAS  Google Scholar 

  35. Das P, Katheria A, Nayak J, Das S, Nath K, Ghosh SK, Naskar K, Das NC (2023) Facile preparation of self-healable and recyclable multilayered graphene-based nanocomposites for electromagnetic interference shielding applications. Colloids Surf A Physicochem Eng Asp 676: 132244. https://doi.org/10.1016/j.colsurfa.2023.132244

    Article  CAS  Google Scholar 

  36. Katheria A, Das P, Ghosh SK, Nayak J, Nath K, Paul S, Biswas S, Das NC (2023) Super-stretchable, self-healing 2D MXene-based composites for thermal management and electromagnetic shielding applications. ACS Appl Eng Mater 1(4):1186. https://doi.org/10.1021/acsaenm.3c00016

    Article  CAS  Google Scholar 

  37. Li JJ, Zhang P, Chen L, Li GM, Chen H, Jia CH, Wu YP, Chen M, Zhao XL, Song PA (2020) Strong, tough and healable elastomer nanocomposites enabled by a hydrogen-bonded supramolecular network. Compos Commun 22:100530. https://doi.org/10.1016/j.coco.2020.100530

    Article  Google Scholar 

  38. Peng T, Huang JR, Gong Z, Chen XQ, Chen YK (2022) Self-healing of reversibly cross-linked thermoplastic vulcanizates. Mater Chem Phys 292:126804. https://doi.org/10.1016/j.matchemphys.2022.126804

    Article  CAS  Google Scholar 

  39. Zhang P, You PF, Feng JB, Xie RS, Chen L, Xiong Y, Song PA (2023) Vitrimer-like, mechanically robust, healable and recyclable biobased elastomers based on epoxy natural rubbers, polylactide and layered double hydroxide. Compos Part A Appl Sci Manuf 171:107575. https://doi.org/10.1016/j.compositesa.2023.107575

    Article  CAS  Google Scholar 

  40. Jin FF, Xia Y, Mao ZW, Ding YF, Guan Y, Zheng A (2014) Special spherical shell-shaped foam deriving from guanidine phosphate – pentaerythritol system and its intumescent fire retardant effects on polypropylene. Polym Degrad Stab 110:252–259. https://doi.org/10.1016/j.polymdegradstab.2014.08.008

    Article  CAS  Google Scholar 

  41. Zhou X, Qiu SL, Chu FK, Xu ZM, Hu Y (2022) An integrated intumescent flame retardant of bismaleimide from novel maleimide-functionalized triazine-rich polyphosphazene microspheres. Chem Eng J 450:138083. https://doi.org/10.1016/j.cej.2022.138083

    Article  CAS  Google Scholar 

Download references

Funding

This research supported by the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 22FKSY17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Ethics declarations

Conflicts of interest

The author(s) declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, P., Zhang, P., Chen, P. et al. Strong, self-healing and flame-retardant elastomer composite based on epoxidized natural rubber, polylactic acid, chitosan and guanidine phosphate. J Polym Res 31, 65 (2024). https://doi.org/10.1007/s10965-024-03886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03886-9

Keywords

Navigation