Skip to main content

Advertisement

Log in

Thermo-mechanical properties of silica-reinforced PLA nanocomposites using molecular dynamics: The effect of nanofiller radius

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the elastic mechanical properties of heat deflection temperature (HDT) of a polymeric matrix composite reinforced with silica particles have been studied at the atomic scale by the molecular dynamics simulation method. Ten atomic samples including pure PLA and 9 nanocomposites with 1, 2, and 3% of volume fractions of silica nanoparticles with different atomic radii of 20, 30, and 50 Å, were constructed. The Young’s modulus of these samples has been calculated after equilibrium and applying the NVT ensemble. Moreover, the variations of Young’s modulus with temperature were measured for different atomic models and the HDT for the nanocomposites were extracted. The results of the simulations showed that the sample with a 20 Å radius of nanoparticle and volume fraction of 3% had the largest Young’s modulus compared to other samples. In this sample, Young’s modulus has reached 5193 MPa, which has shown a 238% increase compared to the pure polymer. Also, the value of the HDT in this sample was calculated about modulus 119 C° about 133% higher than pure polymer. The obtained values of Young’s modulus and HDT for pure polymer showed a good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toozandehjani M, Kamarudin N, Dashtizadeh Z, Lim EY, Gomes A, Gomes C (2018) Conventional and advanced composites in aerospace industry: Technologies revisited. Am J Aerosp Eng 5(9)

  2. Yaragatti N, Patnaik A (2021) A review on additive manufacturing of polymers composites. Mater Today Proc 44:4150–4157

  3. Daneshpayeh S, Ghasemi FA, Ghasemi I (2021) The effect of nanoparticles shape on the mechanical properties of poly lactic acid matrix. J Elastomers Plast 53(6):684–697

    Article  CAS  Google Scholar 

  4. Trybula ME, Barnett CB, Morbiducci U, Kober EM, Muratore M (2021) Advances in molecular dynamics. Adv Mol Dyn 246

  5. Song X, Zhang Y, Zou T, Li Y, Wang P, Hu D (2022) The reinforcement and toughening of jute/PLA (lactic acid) composite material with modified-rubber/SiO2 core-shell particles. Mater Today Sustain 19:100198

    Article  Google Scholar 

  6. Hakim RH, Cailloux J, Santana OO, Bou J, Sánchez-Soto M, Odent J, Maspoch ML (2017) PLA/SiO2 composites: influence of the filler modifications on the morphology, crystallization behavior, and mechanical properties. J Appl Polym Sci 134(40):45367

    Article  Google Scholar 

  7. Wu JH, Chen CW, Kuo MC, Yen MS, Lee KY (2018) High toughness and fast crystallization poly (lactic acid)/Polyamide 11/SiO2 composites. J Polym Environ 26:626–635

  8. Sun YL, Tu LJ, Tsou CH, Lin SM, Lin L, De Guzman MR, Xia Y (2023) Thermal and mechanical properties of biodegradable nanocomposites prepared by poly (lactic acid)/acetyl tributyl citrate reinforced with attapulgite. J Polym Res 30(3):117

    Article  CAS  Google Scholar 

  9. Wen X (2019) One-pot route to graft long-chain polymer onto silica nanoparticles and its application for high-performance poly (l-lactide) nanocomposites. RSC Adv 9(24):13908–13915

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sadat Hoseini Z, Khademzadeh Yeganeh J, Moradi S (2021) A highly toughened poly (lactic acid)/Ethylene-co-Vinyl acetate blend with the simultaneous addition of hydrophobic nanoparticles and Compatibilizer. Iran J Polym Sci Technol 33(6):509–524

    Google Scholar 

  11. Jiang G, Zhang J, Ding J, Chen Y (2021) Design of PLA/ENR thermoplastic vulcanizates with balanced stiffness-toughness based on rubber reinforcement and selective distribution of modified silica. Polym Adv Technol 32(6):2487–2498

    Article  CAS  Google Scholar 

  12. Karevan M (2022) Hybrid micro-composite sheets of Polylactic Acid (PLA)/Carbon Black (CB)/natural kenaf fiber processed by calendering method. J Polym Res 29(9):395

    Article  CAS  Google Scholar 

  13. Da Silva WA, Luna CBB, de Melo JBDCA, Araujo EM, Filho EADS, Duarte RNC (2021) Feasibility of manufacturing disposable cups using PLA/PCL composites reinforced with wood powder. J Polym Environ 29:2932–2951

    Article  Google Scholar 

  14. Jeon I, Yun T, Yang S (2022) Classical, coarse-grained, and reactive molecular dynamics simulations on polymer nanocomposites. Multiscale Sci Eng 4(4):161–178

    Article  ADS  Google Scholar 

  15. Jin S, Li L, Xu Z, Zhao Y (2021) A random batch Ewald method for particle systems with Coulomb interactions. SIAM J Sci Comput 43(4):B937–B960

    Article  MathSciNet  Google Scholar 

  16. Binder K (ed) (1995) Monte Carlo and molecular dynamics simulations in polymer science. Oxford University Press

  17. Haile JM, Johnston I, Mallinckrodt AJ, McKay S (1993) Molecular dynamics simulation: elementary methods. Comput Phys 7(6):625–625

    Article  ADS  Google Scholar 

  18. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego

    Google Scholar 

  19. Farhadi B, Zabihi F, Tebyetekerwa M, Lugoloobi I, Omidi M, Liu A (2023) Simulations of lead-free organic–inorganic perovskites under tensile/compressive loads and different force fields. Mol Phys 121(1):e2150704

    Article  ADS  Google Scholar 

  20. Vaziri SA, Khodarahmi H (2018) Molecular dynamics simulation of carbon nanotube-reinforced polymer nanocomposites

  21. Ghajar MH, Mashhadi MM, Kashani HG (2018) Dynamic mechanical analysis of bucky gel actuator electrolyte by molecular dynamics simulation. Comput Mater Sci 149:379–385

    Article  CAS  Google Scholar 

  22. Dias M, Carvalho PA, Gonçalves AP, Alves E, Correia JB (2023) Hybrid molecular dynamic Monte Carlo simulation and experimental production of a multi-component Cu–Fe–Ni–Mo–W alloy. Intermetallics 161:107960

    Article  CAS  Google Scholar 

  23. Kozioł Z (2022) Size effects in stress propagation and dynamics of dislocations: Fe–Ni–Cr steel. Modell Simul Mater Sci Eng 30(6):065010

    Article  ADS  Google Scholar 

  24. Yang X, Huang Y, Cao B, To AC (2017) Length and temperature dependence of the mechanical properties of finite-size carbyne. Physica E 93:124–131

    Article  ADS  CAS  Google Scholar 

  25. Péter T, Litauszki K, Kmetty Á (2021) Improving the heat deflection temperature of poly (lactic acid) foams by annealing. Polym Degrad Stab 190:109646

    Article  Google Scholar 

  26. Liang JM, Lv QQ, Shen SQ, Li M, Wang ZX, Fei SM (2022) Improved iterative Quantum Algorithm for Ground-State Preparation. Adv Quantum Technol 5(12):2200090

    Article  Google Scholar 

  27. Wei Q, Cai X, Guo Y, Wang G, Guo Y, Lei M, Wang Y (2019) Atomic-scale and experimental investigation on the micro-structures and mechanical properties of PLA blending with CMC for additive manufacturing. Mater Design 183:108158

    Article  CAS  Google Scholar 

  28. Sokolić F, Guissani Y, Guillot B (1985) Molecular dynamics simulations of thermodynamic and structural properties of liquid SO2. Mol Phys 56(2):239–253

    Article  ADS  Google Scholar 

  29. Wootthikanokkhan J, Cheachun T, Sombatsompop N, Thumsorn S, Kaabbuathong N, Wongta N, Kositchaiyong A (2013) Crystallization and thermomechanical properties of PLA composites: effects of additive types and heat treatment. J Appl Polym Sci 129(1):215–223

    Article  CAS  Google Scholar 

  30. Petsiuk A, Lavu B, Dick R, Pearce JM (2022) Waste plastic direct extrusion hangprinter. Inventions 2022(7):70

  31. Tajari N, Sadrnia H, Hosseini F (2022) Effects of ZnO nanoparticles, plasticizer, and emulsifier on PLA films properties and mechanical aging stability

  32. Vu MC, Jeong TH, Kim JB, Choi WK, Kim DH, Kim SR (2021) 3D printing of copper particles and poly (methyl methacrylate) beads containing poly (lactic acid) composites for enhancing thermomechanical properties. J Appl Polym Sci 138(5):49776

    Article  CAS  Google Scholar 

  33. Entezari A, Swain MV, Gooding JJ, Roohani I, Li Q (2020) A modular design strategy to integrate mechanotransduction concepts in scaffold-based bone tissue engineering. Acta Biomater 118:100–112

    Article  CAS  PubMed  Google Scholar 

  34. Tang Z, Zhang C, Liu X, Zhu J (2012) The crystallization behavior and mechanical properties of polylactic acid in the presence of a crystal nucleating agent. J Appl Polym Sci 125(2):1108–1115

    Article  CAS  Google Scholar 

  35. Luo YB (2014) A further research on the properties of PLA/TiO2 Nanocomposites. Appl Mech Mater 608:996–1000

    Article  Google Scholar 

  36. Ghasemi S, Behrooz R, Ghasemi I, Yassar RS, Long F (2018) Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). J Thermoplast Compos Mater 31(8):1090–1101

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Shahid Rajaee Teacher Training University under grant number 4988.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Aghadavoudi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikzad, M.K., Aghadavoudi, F. & Ashenai Ghasemi, F. Thermo-mechanical properties of silica-reinforced PLA nanocomposites using molecular dynamics: The effect of nanofiller radius. J Polym Res 31, 44 (2024). https://doi.org/10.1007/s10965-024-03873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03873-0

Keywords

Navigation