Skip to main content
Log in

Simultaneous preparation and reinforcement of organic 2D clay layers/cis-1,4-polyisoprene composite latex and its high-performance films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Cis-1,4-polyisoprene latex (IRL) is the best alternative to natural rubber latex (NRL) because it is free from proteins and can avoid allergic reactions in the human body. Poor mechanical properties of IRL film are a major obstacle to replacing NRL. To address this issue, a novel strategy was developed by a simple one-pot method to prepare a composite latex introducing hexadecyltrimethylammonium bromide (CTAB) modified sodium montmorillonite (org-Mnt) into the IRL preparation process. The microstructures and morphology of the resulting org-Mnt were characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), and Energy Dispersive Spectrometer (EDS). In addition, the dispersion state of the org-Mnt in the composite latex and the morphology of the composite films were determined by transmission electron microscopy (TEM) and SEM. The properties of the composite latex were investigated. Crosslink density, thermogravimetric analysis (TGA), mechanical properties, and thermal oxygen aging properties of the composite latex films were also studied. Finally, the mechanism of org-Mnt reinforcement of IRL was described comprehensively. The results showed that the org-Mnt/IRL (1phr and 2phr) composite latexes had a stable state, excellent film-formation performance, and excellent mechanical properties. Compared with pure IRL films, the tensile strength of org-Mnt/IRL (2phr) composite films increased by 74%, and after thermal oxygen aging, property change rates of the tensile strength and elongation at break increased by 37.2% and 32.1%, respectively, which exceeded those of NRL. The current research provides an effective method for preparing high-performance composite films suitable for high-end medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL (2010) Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 85(7):1562–1570

    Article  Google Scholar 

  2. Nielsen GD, Wolkof P, Alarie Y (2007) Sensory irritation: risk assessment approaches. Regul Toxicol Pharm 48(1):6–18

    Article  CAS  Google Scholar 

  3. Ren X, Barrera CS, Tardif JL, Gil A, Cornish K (2020) Liquid guayule natural rubber, a renewable and crosslinkable processing aid in natural and synthetic rubber compounds. J Clean Prod 276:122933

    Article  CAS  Google Scholar 

  4. Tang S, Li J, Wang R, Zhang J, Lu Y, Hu GH, Wang Z, Zhang L (2022) Current trends in bio-based elastomer materials. SusMat 2(1):2–33

    Article  Google Scholar 

  5. Suppaibulsuk B, Prasassarakich P, Rempel GL (2010) Factorial design of nanosized polyisoprene synthesis via differential microemulsion polymerization. Polym Advan Technol 21(7):467–475

    Article  CAS  Google Scholar 

  6. Cheong IW, Fellows CM, Gilbert RG (2004) Synthesis and cross-linking of polyisoprene latexes. Polymer 45(3):769–781

    Article  CAS  Google Scholar 

  7. Kangwansupamonkon W, Fellows CM, Lamb DJ, Gilbert RG, Kiatkamjornwong S (2004) Kinetics of surface grafting on polyisoprene latexes by reaction calorimetry. Polymer 45(17):5775–5784

    Article  CAS  Google Scholar 

  8. Piya-areetham P, Prasassarakich P, Rempel GL (2013) Organic solvent-free hydrogenation of natural rubber latex and synthetic polyisoprene emulsion catalyzed by water-soluble rhodium complexes. J Mol Catal A-Chem 372:151–159

    Article  CAS  Google Scholar 

  9. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Minera 95(1):185–187

    Article  ADS  CAS  Google Scholar 

  10. Warr LN (2020) Recommended abbreviations for the names of clay minerals and associated phases. Clay Min 55(3):261–264

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Liang YR, Cao WL, Zhang XB, Tan YJ, He SJ, Zhang LQ (2009) Preparation and properties of nanocomposites based on different polarities of nitrile–butadiene rubber with clay. J Appl Polym Sci 112(5):3087–3094

    Article  CAS  Google Scholar 

  12. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  13. Iwasaki T (2020) Structure of a layered octosilicate intercalated with alkylamines with different molecular structures in water. J Solid State Chem 290:121545

    Article  CAS  Google Scholar 

  14. Ahmad MB, Hoidy WH, Ibrahim NAB, Al-Mulla EAJ (2009) Modification of montmorillonite by new surfactants. J Eng Appl Sci 4(3):184–188

    CAS  Google Scholar 

  15. Guo YX, Liu JH, Gates WP, Zhou CH (2020) Organo-modification of montmorillonite. Clay Clay Miner 68:601–622

    Article  ADS  CAS  Google Scholar 

  16. Shabafrooz V, Bandla S, Allahkarami S (2018) Graphene/polyethylene terephthalate nanocomposites with enhanced mechanical and thermal properties. J Polym Res 25:256–262

    Article  Google Scholar 

  17. Ibarra L, Rodrı’guez A, Mora I (2007) Ionic nanocomposites based on XNBR-OMg filled with layered nanoclays. Eur Polym J 43:753–761

    Article  CAS  Google Scholar 

  18. Chen H, Li Y, Wang S, Li Y, Zhou Y (2018) Highly ordered structured montmorillonite/brominated butyl rubber nanocomposites: dramatic enhancement of the gas barrier properties by an external magnetic field. J Membrane Sci 546:22–30

    Article  CAS  Google Scholar 

  19. Singh K, Nanda T, Mehta R (2017) Addition of nanoclay and compatibilized EPDM rubber for improved impact strength of epoxy glass fiber composites. Compos A Appl Sci Manufact 103:263–271

  20. Zhang Z, Yu F, Yu W, Zhang H (2015) Non-isothermal crystallization behavior of dynamically vulcanized long chain branched polypropylene/ethylene-propylene-diene monomer blends. J Polym Res 22:198–206

    Article  CAS  Google Scholar 

  21. Maroufkhani M, Katbab AA, Zhang J (2018) Manipulation of the properties of PLA nanocomposites by controlling the distribution of nanoclay via varying the acrylonitrile content in NBR rubber. Polym Test 65:313–321

    Article  CAS  Google Scholar 

  22. Ebrahimi-Jahromi A, Ebrahimi-Jahromi HR, Hemmati F, Saeb MR, Formela K (2016) Morphology and mechanical properties of polyamide/clay nanocomposites toughened with NBR/NBR-g-GMA: A comparative study. Compos B Eng 90:478–484

  23. Bhuyan B, Srivastava SK, Pionteck J (2017) MWCNT/hectorite hybrid filled acrylonitrile butadiene rubber/ethylene-co-vinyl acetate blend nanocomposites: preparation and properties. J Polym Res 24:150–159

    Article  Google Scholar 

  24. Hrachová J, Komadel P, Chodák I (2008) Effect of montmorillonite modification on mechanical properties of vulcanized natural rubber composites. J Mater Sci 43(6):2012–2017

    Article  ADS  Google Scholar 

  25. Archibong FN, Orakwe LC, Ogah OA, Mbam SO, Ajah SA, Okechukwu ME, Igberi CO, Okafor KJ, Chima MO, Ikelle II (2023) Emerging progress in montmorillonite rubber/polymer nanocomposites: A review. J Mater Sci 58(6):2396–2429

    Article  ADS  CAS  Google Scholar 

  26. Esmaeili E, Rounaghi SA, Eckert J (2021) Mechanochemical synthesis of rosin-modified montmorillonite: A breakthrough approach to the next generation of OMMT/Rubber nanocomposites. Nanomaterials 11(8):1974

  27. Zhang J, Li L, Xu J, Sun D (2014) Effect of cetyltrimethylammonium bromide addition on the emulsions stabilized by montmorillonite. Colloid Polym Sci 292:441–447

    Article  CAS  Google Scholar 

  28. Flory PJ (1950) Statistical mechanics of swelling of network structures. J Cheml Phys 18(1):108–111

    Article  ADS  CAS  Google Scholar 

  29. Arroyo M, Lopez-Manchado MA, Herrero B (2003) Organo-Montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44(8):2447–2453

    Article  CAS  Google Scholar 

  30. Bala P, Samantaray BK, Srivastava SK, Nando GB (2004) Organomodified montmorillonite as filler in natural and synthetic rubber. J Appl Polym Sci 92(6):3583–3592

    Article  CAS  Google Scholar 

  31. Liu YY, Gu JJ, Zhang JL, Wang J, Nie N, Fu Y, Li W, Yu F (2015) Controllable synthesis of nano-sized LiFePO4/C via a high shear mixer facilitated hydrothermal method for high rate Li-ion batteries. Electrochim Acta 173:448–457

    Article  CAS  Google Scholar 

  32. Özcan-Taşkin NG, Padron G, Voelkel A (2009) Effect of particle type on the mechanisms of break up of nanoscale particle clusters. Chem Eng Res Des 87(4):468–473

    Article  Google Scholar 

  33. Riddick TM (1968) Control of colloid stability through Zeta potential: With a closing chapter on its relationship to cardiovascular disease, vol 1. Zeta-Meter, Incorporated, New York, Staunton, VA, USA

    Google Scholar 

  34. Hoven VP, Chombanpaew K, Iwasaki Y, Tasakorn P (2010) Improving blood compatibility of natural rubber by UV-induced graft polymerization of hydrophilic monomers. J Appl Polym Sci 112(1):208–217

    Article  Google Scholar 

  35. Hu J, Tian X, Sun J, Yuan J, Yuan Y (2020) Chitin nanocrystals reticulated self-assembled architecture reinforces deproteinized natural rubber latex film. J Appl Polym Sci 137(39):49173

    Article  CAS  Google Scholar 

  36. Jiang G, Song S, Zhai Y, Chi F, Yong Z (2015) Improving the Filler Dispersion of Polychloroprene/Carboxylated multi-walled Carbon Nanotubes composites by non-covalent functionalization of carboxylated ionic liquid. Compos Sci Technol 123:171–178

    Article  Google Scholar 

  37. Ponnamma D, Ramachandran R, Hussain S, Rajaraman R, Amarendra G, Varughese KT, Thomas S (2015) Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites. Compos Part A-Appl S 77:164–171

    Article  CAS  Google Scholar 

  38. Song P, Xu Z, Wu Y, Cheng Q, Guo Q, Wang H (2017) Super-tough artificial nacre based on graphene oxide via synergistic interface interactions of π-π stacking and hydrogen bonding. Carbon 111:807–812

    Article  CAS  Google Scholar 

  39. Chen Y, Wei W, Zhu Y, Luo J, Liu X (2019) Noncovalent functionalization of carbon nanotubes via co-deposition of tannic acid and polyethyleneimine for reinforcement and conductivity improvement in epoxy composite. Compos Sci Technol 170:25–33

    Article  CAS  Google Scholar 

  40. Sui G, Zhong WH, Yang XP, Yu YH (2008) Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mat Sci Eng A-Struct 485:524–531

    Article  Google Scholar 

  41. Komine H, Ogata N (1996) Prediction for swelling characteristics of compacted bentonite. Can Geo Techl J 33(1):11–22

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Natural Science Foundation of Shandong Province (ZR2020ME059 and ZR2021ME028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Zhang, H., Hua, J. et al. Simultaneous preparation and reinforcement of organic 2D clay layers/cis-1,4-polyisoprene composite latex and its high-performance films. J Polym Res 31, 54 (2024). https://doi.org/10.1007/s10965-024-03871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03871-2

Keywords

Navigation