Skip to main content
Log in

The preparation of an ion-imprinted polymer based on hyperbranched polyamide-amines and epoxy resin and its efficient adsorption mechanism for Cr(VI) from aqueous solutions

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Cr(VI) is listed as the first category pollutant that needs strict control, posing a lasting risk to the environment and human body. Ion imprinting technology has attracted more and more researchers' attention due to its high selectivity. Here, a chromium(VI)-imprinted polymer (Cr(VI)-IIPs) was prepared by precipitation polymerization using potassium dichromate (K2Cr2O7) as the template ions, tert-butanol [C(CH3)3OH] as a pore-forming agent, Bisphenol A epoxy resins as the carrier, and hyperbranched polyamide-amines as curing and complexing agent. The research objective of this work is to crosslink epoxy resin as a matrix with hyperbranched polyamides to obtain ion imprinted materials with stable structure, acid and alkali resistance, low cost, and reusability. The detailed adsorption studies reveal that the adsorption behavior of the Cr(VI)-IIPs for Cr(VI) conforms to the quasi-second-order kinetic model and Langmuir adsorption isotherm model. At pH = 2 and 298K, the theoretical maximum adsorption capacity reached 263.15mg/g, reaching adsorption equilibrium within 120 min. Moreover, the adsorbent can be regenerated and the equilibrium adsorption amount will not decrease significantly. In addition, the column adsorption experiment shows that Cr(VI)-IIPs can be well applied to the treatment of actual wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Nascimento MP, Souza RC, Miguel IM, Pigatin WL, Hjc V (2001) Effects of tungsten carbide thermal spray coating by HP/HVOF and hard chromium electroplating on AISI 4340 high strength steel. Surf Coat Technol 138:113–124. https://doi.org/10.1016/S0257-8972(00)01148-8

    Article  CAS  Google Scholar 

  2. Paustenbach D, Finley B, Mowat F, Kerger B (2003) Human health risk and exposure assessment of chromium (VI) in tap water. J Toxicol Environ Health PartA 66:1295–1339. https://doi.org/10.1080/15287390306388

    Article  CAS  Google Scholar 

  3. Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806. https://doi.org/10.1080/00958972.2011.583646

    Article  CAS  Google Scholar 

  4. Thelma P, Costa PJ (2020) Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol 40:1183–1197. https://doi.org/10.1002/jat.3965

    Article  CAS  Google Scholar 

  5. Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C: Environ Carcinog Ecotoxicol Rev 34:1–32. https://doi.org/10.1080/10590501.2015.1096883

    Article  CAS  Google Scholar 

  6. Un UT, Onpeker SE, Ozel E (2017) The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments fromtheresulting sludge. J Environ Manage 200:196–203. https://doi.org/10.1016/j.jenvman.2017.05.075

    Article  CAS  Google Scholar 

  7. Mohammed K, Sahu O (2019) Recovery of chromium from tannery industry waste water by membrane separation technology: health and engineering aspects. Sci Afr 4:e00096. https://doi.org/10.1016/j.sciaf.2019.e00096

    Article  Google Scholar 

  8. Huang ZQ, Cai W, Zhang Z (2022) Modification and acidification of polysulfone as effective strategies to enhance adsorptive ability of chromium(VI) and separation properties of ultrafiltration membrane. J Appl Polym Sci 139:52127. https://doi.org/10.1002/app.52127

    Article  CAS  Google Scholar 

  9. Wu S, Li M, Xin L, Long H, Gao X (2022) Efficient removal of Cr(VI) by triethylenetetramine modified sodium alginate/carbonized chitosan composite via adsorption and photocatalytic reduction. J Mol Liq 366:120160. https://doi.org/10.1016/j.molliq.2022.120160

    Article  CAS  Google Scholar 

  10. Kumar G, Dutta RK (2022) Sunlight-induced enhanced photocatalytic reduction of chromium(VI) and photocatalytic degradation of methylene blue dye and ciprofloxacin antibiotic by Sn3O4/SnS2 nanocomposite. Environ Sci Pollut Res Int 29:57758–57772. https://doi.org/10.1007/S11356-022-19853-0

    Article  CAS  PubMed  Google Scholar 

  11. Liu H, Zhang F, Peng Z (2019) Adsorption mechanism of Cr(VI) onto GO/PAMAMs composites. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-40344-9

    Article  CAS  Google Scholar 

  12. Qu J, Wu Z, Liu Y et al (2022) Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms. Bioresour Technol 360:127407. https://doi.org/10.1016/j.biortech.2022.127407

    Article  CAS  PubMed  Google Scholar 

  13. Li P, Damron JT, Veith GM, Bryantsev VS, Mahurin SM, Popovs I, Jansone-Popova S (2021) Bifunctional Ionic Covalent Organic Networks for Enhanced Simultaneous Removal of Chromium(VI) and Arsenic(V) Oxoanions via Synergetic Ion Exchange and Redox Process. Small 17:2104703. https://doi.org/10.1002/SMLL.202170241

    Article  CAS  Google Scholar 

  14. Zhuang X, Hao J, Zheng X et al (2021) High-performance adsorption of chromate by hydrazone-linked guanidinium-based ionic covalent organic frameworks: selective ion exchange. Sep Purif Technol 274:118993. https://doi.org/10.1016/j.seppur.2021.118993

    Article  CAS  Google Scholar 

  15. Yan X, Liu X, Zhang M et al (2021) Lab-scale evaluation of the microbial bioremediation of Cr(VI): contributions of biosorption, bioreduction, and biomineralization. Environ Sci Pollut Res Int 28:1–13. https://doi.org/10.1007/S11356-020-11852-3

    Article  Google Scholar 

  16. LiaoY MX, Yang Z, Chai L, Zhang S, Wang Y (2014) Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation. Environ Sci Pollut Res Int 21:379–388. https://doi.org/10.1007/s11356-013-1919-z

    Article  CAS  Google Scholar 

  17. Li Y, Liu C, Xu P, Li M, Zen M, Tang S (2014) Controlled fabrication of ordered mesoporous titania/carbon fiber composites with high photoactivity: Synergistic relationship between surface adsorption and photocatalysis. Chem Eng J 243:108–116. https://doi.org/10.1016/j.cej.2013.12.050

    Article  CAS  Google Scholar 

  18. Li H, Yao D, Feng Q et al (2018) Adsorption of Cd(II) and Pb(II) on biochars derived from grape vine shoots. Desalin Water Treat 118:195–204. https://doi.org/10.5004/dwt.2018.22414

    Article  CAS  Google Scholar 

  19. Wang Q, Zhu S, Xi C, Zhang F (2022) A Review: Adsorption and Removal of Heavy Metals Based on Polyamide-amines Composites. Front Chem 10:814643. https://doi.org/10.3389/FCHEM.2022.814643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou N, Chen H, Feng Q et al (2017) Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh bananapeels. J Cleaner Prod 165:221–230. https://doi.org/10.1016/j.jclepro.2017.07.111

    Article  CAS  Google Scholar 

  21. Zhou Z, Xu Z, Feng Q et al (2018) Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar. J Cleaner Prod 187:996–1005. https://doi.org/10.1016/j.jclepro.2018.03.268

    Article  CAS  Google Scholar 

  22. Zhu S, Xi C, Zhang Y, Zhang F (2022) Preparation and characterization of Cadmium(II)-ion-imprinted composites based on epoxy resin. ACS Appl Polym Mater 4:9284–9293. https://doi.org/10.1021/acsapm.2c01547

    Article  CAS  Google Scholar 

  23. Zhang H, Ma R, Yang Y, Huang L, Chen N, Xie Q (2022) Study of ion-imprinted adsorbent materials on diatom-based Cr(VI) surfaces. Mater Lett 308:131149. https://doi.org/10.1016/J.MATLET.2021.131149

    Article  CAS  Google Scholar 

  24. Tian H, Li H, Mao L, Li K (2021) Preparation of a pinoresinol diglucoside imprinted polymer using metal organic frame as the matrix for extracting target compound from eucommia ulmoides. Sep Sci Technol 56:3136–3150. https://doi.org/10.1080/01496395.2020.1869258

    Article  CAS  Google Scholar 

  25. Wang Q, Zhu S, Xi C, Zhang F (2023) Modification of the crosslinked hyperbranched polyamide-amines by thiourea and its selective adsorption for Cu (II). Polym Bull 80:7927–7947. https://doi.org/10.1007/s00289-022-04433-6

    Article  CAS  Google Scholar 

  26. Cusnir R, Froidevaux P, Carbonez P, Straub M (2022) Solid-phase extraction of 225Ac using ion-imprinted resin and 243Am as a radioactive tracer for internal dosimetry and incorporation measurements. Anal Chim Acta 1194:339421. https://doi.org/10.1016/J.ACA.2021.339421

    Article  CAS  PubMed  Google Scholar 

  27. Yan L, Yin Y, Lv P, Zhang Z, Wang J, Long F (2016) Synthesis and application of novel 3D magnetic chlorogenic acidimprinted polymers based on a graphene–carbon nanotube composite. J Agric Food Chem 64:3091–3100. https://doi.org/10.1021/acs.jafc.6b00518

    Article  CAS  PubMed  Google Scholar 

  28. Yan L, Wang J, Lv P, Xie D, Zhang Z (2017) A facile synthesis of novel three-dimensional magnetic imprinted polymers for rapid extraction of bovine serum albumin in bovine calf serum. Anal Bioanal Chem 409:1–11. https://doi.org/10.1007/s00216-017-0283-0

    Article  CAS  Google Scholar 

  29. Huang XH, Song JJ, Li H, Gong MT, Zhang Y (2019) Selective removal of nicotine from the main stream smoke by using a surface-imprinted polymer monolith as adsorbent. J Hazard Mater 365:53–63. https://doi.org/10.1016/j.jhazmat.2018.10.101

    Article  CAS  PubMed  Google Scholar 

  30. Fan JP, Luo JJ, Zhang XH et al (2019) A novel electrospun β-CD/CS/PVA nanofiber membrane for simultaneous and rapid removal of organic micropollutants and heavy metal ions from water. Chem Eng J 378:122232. https://doi.org/10.1016/j.cej.2019.122232

    Article  CAS  Google Scholar 

  31. Bayramoglu G, Arica MY (2011) Synthesis of Cr(VI)-imprinted poly(4-vinyl pyridine-co-hydroxyethyl methacrylate) particles: Its adsorption propensity to Cr(VI). J Hazard Mater 187:213–221. https://doi.org/10.1016/j.jhazmat.2011.01.022

    Article  CAS  PubMed  Google Scholar 

  32. Kumar A, Balouch A, Pathan AA, Abdullah JMS, Mahar AM, Rajput M (2019) Novel Chromium Imprinted polymer: Synthesis, Characterization and analytical applicability for the selective remediation of Cr(VI) from an aqueous system. Int J Environ Anal Chem 99:454–473. https://doi.org/10.1080/03067319.2019.1599876

    Article  CAS  Google Scholar 

  33. Luo Z, Guo M, Jiang H, Geng W, Lian Z (2020) Plasma polymerization mediated construction of surface ion-imprinted polypropylene fibers for the selective adsorption of Cr(VI). React Funct Polym 150:104552. https://doi.org/10.1016/j.reactfunctpolym.2020.104552

    Article  CAS  Google Scholar 

  34. Lin H, Han S, Dong Y, He Y (2017) The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr(VI). Appl Surf Sci 412:152–159. https://doi.org/10.1016/j.apsusc.2017.03.061

    Article  CAS  Google Scholar 

  35. Wang L, Luo Y, Li H, Yu D, Wang Y, Wang W, Wu M (2019) Preparation and selective adsorption of surface-imprinted microspheres based on hyperbranched polyamide–functionalized sodium alginate for the removal of Sb(III). Colloids Surf A 585:124106. https://doi.org/10.1016/j.colsurfa.2019.124106

    Article  CAS  Google Scholar 

  36. Wang Q, Zhu S, Xi C, Shen Y, Zhang F (2021) The cross-linked hyperbranched polyamide-amines: The preparation and its adsorption for Pb(II). J Appl Polym Sci 139:51866. https://doi.org/10.1002/app.51866

    Article  CAS  Google Scholar 

  37. Sienkiewicz N, Dominic M, Parameswaranpillai J (2022) Natural fillers as potential modifying agents for epoxy composition: a review. Polymers 14:265. https://doi.org/10.3390/polym14020265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang HR, Yang C, Li SS et al (2022) Site-imprinted hollow composites with integrated functions for ultra-efficient capture of hexavalent chromium from water. Sep Purif Technol 284:120240. https://doi.org/10.1016/j.seppur.2021.120240

    Article  CAS  Google Scholar 

  39. Neolaka YAB, Lawa Y, Naat JN et al (2020) A Cr(VI)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater. React Funct Polym 147:104451. https://doi.org/10.1016/j.reactfunctpolym.2019.104451

    Article  CAS  Google Scholar 

  40. Pakade V, Cukrowska E, Darkwa J, Torto N, Chimuka L (2011) Selective removal of chromium(VI) from sulphates and other metal anions using an ion-imprinted polymer. Water SA 37:529–538. https://doi.org/10.4314/wsa.v37i4.11

    Article  CAS  Google Scholar 

  41. Zhou Z, Liu X, Zhang M, Jiao J, Ren Z (2019) Preparation of highly efficient ion-imprinted polymers with Fe3O4 nanoparticles as carrier for removal of Cr(VI) from aqueous solution. Sc Total Environ 699:134334. https://doi.org/10.1016/j.scitotenv.2019.134334

    Article  CAS  Google Scholar 

  42. Wang H, Wang S, Wang S, Fu L, Zhang L (2023) Efficient metal-organic framework adsorbents for removal of harmful heavy metal Pb(II) from solution: Activation energy and interaction mechanism. J Environ Chem Eng 11:109335. https://doi.org/10.1016/j.jece.2023.109335

    Article  CAS  Google Scholar 

  43. Yang Y, Wang Y, Zheng C et al (2022) Lanthanum carbonate grafted ZSM-5 for superior phosphate uptake: Investigation of the growth and adsorption mechanism. Chem Eng J 430:133166. https://doi.org/10.1016/j.cej.2021.133166

    Article  CAS  Google Scholar 

  44. Yao N, Li C, Yu J et al (2020) Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Sep Purif Technol 236:116278. https://doi.org/10.1016/j.seppur.2019.116278

    Article  CAS  Google Scholar 

  45. Langmuir I (1917) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  46. Lu L, Na C (2022) Gibbsian interpretation of Langmuir, Freundlich and Temkin isotherms for adsorption in solution. Philos Mag Lett 102:239–253. https://doi.org/10.1080/09500839.2022.2084571

    Article  CAS  Google Scholar 

  47. Zhao H, Ye Y, Cao S, Dai J, Li L (2014) Synthesis and properties of cadmium(II)-imprinted polymer supported by magnetic multi-walled carbon nanotubes. Anal Methods 6:9313–9320. https://doi.org/10.1039/C4AY02083A

    Article  CAS  Google Scholar 

  48. Sari A, Tuzen M, Ctak D, Soylak M (2007) Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. J Hazard Mater 148:387–394. https://doi.org/10.1016/j.jhazmat.2007.02.052

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q, Zhu S, Xi C, Jiang B, Zhang F (2022) Adsorption and Removal of Mercury(II) by a Crosslinked Hyperbranched Polymer Modified via Sulfhydryl. ACS Omega 7:12231–12241. https://doi.org/10.1021/acsomega.2c00622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Babakhani A, Sartaj M (2022) Synthesis, characterization, and performance evaluation of ion-imprinted crosslinked chitosan (with sodium tripolyphosphate) for cadmium biosorption. J Environ Chem Eng 10:107147. https://doi.org/10.1016/j.jece.2022.107147

    Article  CAS  Google Scholar 

  51. Lu XF, Ji WF, Yuan L, Yu S, Guo DS (2019) Preparation of carboxy-functionalized covalent organic framework for efficient removal of Hg2+ and Pb2+ from Water. Ind Eng Chem Res 58:17660–17667. https://doi.org/10.1021/acs.iecr.9b03138

    Article  CAS  Google Scholar 

  52. Yu J, Lu Q, Zheng J, Li Y (2019) Chitosan/attapulgite/poly(acrylic acid) hydrogel prepared by glow-discharge electrolysis plasma as a reusable adsorbent for selective removal of Pb2+ ions. Iran Polym J 28:881–893. https://doi.org/10.1007/s13726-019-00751-1

    Article  CAS  Google Scholar 

  53. Tian Y, Cao Y, Wang Y, Yang W, Feng J (2013) Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers. Adv Mater 25:2980–2983. https://doi.org/10.1002/adma.201300118

    Article  CAS  PubMed  Google Scholar 

  54. Dognani G, Hadi P, Ma H, Cabrera FC, Job AE, Agostini DLS, Hsiao BS (2019) Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane. Chem Eng J 372:341–351. https://doi.org/10.1016/j.cej.2019.04.154

    Article  CAS  Google Scholar 

  55. Pang L, Hu J, Zhang M, Yang C, Wu G (2018) An efficient and reusable quaternary ammonium fabric adsorbent prepared by radiation grafting for removal of Cr(VI) from wastewater. Environ Sci Pollut Res Int 25:11045–11053. https://doi.org/10.1007/s11356-018-1355-1

    Article  CAS  PubMed  Google Scholar 

  56. Dai Y, Zhou L, Tang X, Xi J, Adesina AA (2020) Macroporous ion-imprinted chitosan foams for the selective biosorption of U(VI) from aqueous solution. Int J Biol Macromol 164:4155–4164. https://doi.org/10.1016/j.ijbiomac.2020.08.238

    Article  CAS  PubMed  Google Scholar 

  57. Kong Z, Du Y, Wei J, Zhang H, Fan L (2021) Synthesis of a new ion-imprinted polymer for selective Cr(VI) adsorption from aqueous solutions effectively and rapidly. J Colloid Interface Sci 588:749–760. https://doi.org/10.1016/j.jcis.2020.11.107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Projects of the Education Department of Hunan Province (21A0345) and Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province, P. R. China.

Funding

Key Projects of the Education Department of Hunan Province,21A0345,Fan Zhang,Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province,P. R. China.

Author information

Authors and Affiliations

Authors

Contributions

Chen Xi contributed to investigation, data curation, and writing original manuscript. Fan Zhang contributed to investigation, data curation, and writing review. Yuzhuo Zhang contributed to investigation and editing.

Corresponding author

Correspondence to Fan Zhang.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare that they not have conflflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4118 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, C., Zhang, Y. & Zhang, F. The preparation of an ion-imprinted polymer based on hyperbranched polyamide-amines and epoxy resin and its efficient adsorption mechanism for Cr(VI) from aqueous solutions. J Polym Res 31, 19 (2024). https://doi.org/10.1007/s10965-023-03864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03864-7

Keywords

Navigation