Skip to main content

Advertisement

Log in

Multicycle indentation based fatigue and creep study of polymers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymers are the latest designed materials used in structural, fitting, joint, and other applications. Three thermoplastic polymers, named Polyether ether ketone (PEEK), Poly (methyl methacrylate) (PMMA), and Poly-tetra-fluoro-ethylene (PTFE), have been subjected to the constant load multicycle (CLMC) micro-indentation method. In this study, the fatigue and creep behaviour of the materials has been assessed using the load-displacement curve produced from the indentation method. The primary goal of this paper is to examine the polymer's cycle fatigue behaviour by taking into account the repetitive loading and the resulting hysteresis loop. A technique based on stress and energy was used to study the polymer's fatigue behaviour. In these stress- and energy-based techniques, respectively, hardness (H) and plastic energy (EP) correspond with fatigue life (N). In the fatigue life prediction of polymers, the fatigue toughness, or a total of hysteresis energy, was studied. In addition, these viscoelastic polymers experience time-dependent deformation when a force is applied. By examining the depth (h) with holding time (tH) data, multicycle micro indentation is utilised to determine the creep behaviour of polymers. This study discusses developing a simple and practical approach for calculating the creep and back creep displacement of polymers with the holding time at maximum and minimum load. The fatigue and creep properties of the polymer can be assessed simultaneously using a CLMC indentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

\(A\) :

Indenter contact area

\(E\) :

Elastic modulus of the materials

\({E}_{i}\) :

Elastic modulus of indenter

\({E}_{P}\) :

Dissipated plastic Hysteresis energy

\({E}_{T}\) :

Total absorbed energy or fatigue fracture of the materials

\(H\) :

Hardness of the materials

h :

Creep displacement of the material

N :

Number of Cycles

P :

Applied indenter load

t :

Holding time of the indenter

v :

Poisson ratio of the materials

v i :

Poisson ratio of the indenter

References

  1. Sawyer LC, Grubb DT, Meyers GF (2008) Specimen preparation methods. Polymer Microscopy 130–247

  2. Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jones DP, Leach DC, Moore DR (1985) Mechanical properties of poly (ether-ether-ketone) for engineering applications. Polymer 26(9):1385–1393

    Article  CAS  Google Scholar 

  4. Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20(1):9–34

    Article  CAS  Google Scholar 

  5. Shrestha R, Simsiriwong J, Shamsaei N, Moser RD (2016) Cyclic deformation and fatigue behavior of polyether ether ketone (PEEK). Int J Fatigue 82:411–427

    Article  CAS  Google Scholar 

  6. Abbasnezhad N, Khavandi A, Fitoussi J, Arabi H, Shirinbayan M, Tcharkhtchi A (2018) Influence of loading conditions on the overall mechanical behavior of polyether-ether-ketone (PEEK). Int J Fatigue 109:83–92

    Article  CAS  Google Scholar 

  7. Mortazavian S, Fatemi A, Mellott SR, Khosrovaneh A (2015) Effect of cycling frequency and self-heating on fatigue behavior of reinforced and unreinforced thermoplastic polymers. Polym Eng Sci 55(10):2355–2367

    Article  CAS  Google Scholar 

  8. Shariati M, Hatami H, Yarahmadi H, Eipakchi HR (2012) An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading. Mater Des 34:302–312

    Article  CAS  Google Scholar 

  9. Mellott SR, Fatemi A (2014) Fatigue behavior and modeling of thermoplastics including temperature and mean stress effects. Polym Eng Sci 54(3):725–738

    Article  CAS  Google Scholar 

  10. Simsiriwong J, Shrestha R, Shamsaei N, Lugo M, Moser RD (2015) Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK). J Mech Behav Biomed Mater 51:388–397

  11. Broitman E (2017) Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribol Lett 65(1):1–18

    Article  Google Scholar 

  12. Briscoe BJ, Sinha SK (1999) Hardness and normal indentation of polymers. Mechanical properties and testing of polymers. Springer, Dordrecht, pp 113–122

    Chapter  Google Scholar 

  13. Milman YV, Golubenko AA, Dub SN (2011) Indentation size effect in nanohardness. Acta Mater 59(20):7480–7487

    Article  CAS  Google Scholar 

  14. McElhaney KW, Vlassak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13(5):1300–1306

    Article  CAS  Google Scholar 

  15. Oyen ML, Cook RF (2003) Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J Mater Res 18(1):139–150

    Article  CAS  Google Scholar 

  16. Low IM, Paglia G, Shi C (1998) Indentation responses of viscoelastic materials. J Appl Polym Sci 70(12):2349–2352

    Article  CAS  Google Scholar 

  17. Bľanda M, Duszová A, Csanádi T, Hvizdoš P, Lofaj F, Dusza J (2015) Indentation hardness and fatigue of the constituents of WC–Co composites. Int J Refract Metal Hard Mater 49:178–183

    Article  Google Scholar 

  18. Duszová A, Hvizdoš P, Lofaj F, Major Ł, Dusza J, Morgiel J (2013) Indentation fatigue of WC–Co cemented carbides. Int J Refract Metal Hard Mater 41:229–235

    Article  Google Scholar 

  19. Bľanda M, Duszová A, Csanádi T, Hvizdoš P, Lofaj F, Dusza J (2014) Indentation fatigue of WC grains in WC–Co composite. J Eur Ceram Soc 34(14):3407–3412

    Article  Google Scholar 

  20. Jia YF, Xuan FZ (2012) Anisotropic fatigue behavior of human enamel characterized by multi-cycling nano-indentation. J Mech Behav Biomed Mater 16:163–168

  21. Klein MW, Blinn B, Smaga M, Beck T (2020) High cycle fatigue behavior of high-Mn TWIP steel with different surface morphologies. Int J Fatigue 134:105499

    Article  CAS  Google Scholar 

  22. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  CAS  Google Scholar 

  23. Briscoe BJ, Fiori L, Pelillo E (1998) Nano-indentation of polymeric surfaces. J Phys D Appl Phys 31(19):2395

    Article  CAS  Google Scholar 

  24. Briscoe BJ, Evans PD, Pellilo E, Sinha SK (1996) Scratching maps for polymers. Wear 200(1–2):137–147

    Article  CAS  Google Scholar 

  25. Sharma G, Ramanujan RV, Kutty TRG, Prabhu N (2005) Indentation creep studies of iron aluminide intermetallic alloy. Intermetallics 13(1):47–53

    Article  CAS  Google Scholar 

  26. Abd El-Rehim AF, Zahran HY (2014) Effect of aging treatment on microstructure and creep behaviour of Sn–Ag and Sn–Ag–Bi solder alloys. Mater Sci Technol 30(4):434–438

    Article  CAS  Google Scholar 

  27. Shen L, Cheong WCD, Foo YL, Chen Z (2012) Nano-indentation creep of tin and aluminium: A comparative study between constant load and constant strain rate methods. Mater Sci Eng, A 532:505–510

    Article  CAS  Google Scholar 

  28. Ma X, Li F, Zhao C, Zhu G, Li W, Sun Z, Yuan Z (2017) Indenter load effects on creep deformation behavior for Ti-10V-2Fe-3Al alloy at room temperature. J Alloy Compd 709:322–328

    Article  CAS  Google Scholar 

  29. Chudoba T, Richter F (2001) Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf Coat Technol 148(2–3):191–198

    Article  CAS  Google Scholar 

  30. Feng G, Ngan AHW (2002) Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J Mater Res 17(3):660–668

    Article  CAS  Google Scholar 

  31. Peng G, Zhang T, Feng Y, Huan Y (2012) Determination of shear creep compliance of linear viscoelastic-plastic solids by instrumented indentation. Polym Testing 31(8):1038–1044

    Article  CAS  Google Scholar 

  32. Menčík J, He LH, Swain MV (2009) Determination of viscoelastic–plastic material parameters of biomaterials by instrumented indentation. J Mech Behav Biomed Mater 2(4):318–325

    Article  PubMed  Google Scholar 

  33. Menčík J, He LH, Němeček J (2011) Characterization of viscoelastic-plastic properties of solid polymers by instrumented indentation. Polym Testing 30(1):101–109

    Article  Google Scholar 

  34. Shepherd TN, Zhang J, Ovaert TC, Roeder RK, Niebur GL (2011) Direct comparison of nano-indentation and macroscopic measurements of bone viscoelasticity. J Mech Behav Biomed Mater 4(8):2055–2062

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu Z, Baker TA, Ovaert TC, Niebur GL (2011) The effect of holding time on nano-indentation measurements of creep in bone. J Biomech 44(6):1066–1072

    Article  PubMed  PubMed Central  Google Scholar 

  36. Polymers Properties Database 2015. http://polymerdatabase.com/polymerphysics/PoissonTable.html. Accessed 9 Aug 2018

  37. Liu X, Zhang Q, Zhao X, Yang X, Luo L (2016) Ambient-temperature nano-indentation creep in ultrafine-grained titanium processed by ECAP. Mater Sci Eng, A 676:73–79

    Article  CAS  Google Scholar 

  38. Lucas BN, Oliver WC (1999) Indentation power-law creep of high-purity indium. Metall and Mater Trans A 30(3):601–610

    Article  Google Scholar 

  39. Hu J, Sun G, Zhang X, Wang G, Jiang Z, Han S, Lian J (2015) Effects of loading strain rate and stacking fault energy on nano-indentation creep behaviors of nanocrystalline Cu, Ni-20 wt.% Fe and Ni. J Alloys Compd 647:670–680

  40. Lee EH, Radok JRM (1960) The contact problem for viscoelastic bodies

  41. Tao G, Xia Z (2007) Mean stress/strain effect on fatigue behavior of an epoxy resin. Int J Fatigue 29(12):2180–2190

    Article  CAS  Google Scholar 

  42. Lorenzo V, Perena JM, Fatou JG (1989) Vickers microhardness related to mechanical properties of polypropylene. J Mater Sci Lett 8(12):1455–1457

    Article  CAS  Google Scholar 

  43. Sarkar PP, De PS, Dhua SK, Chakraborti PC (2017) Strain energy based low cycle fatigue damage analysis in a plain C-Mn rail steel. Mater Sci Eng, A 707:125–135

    Article  CAS  Google Scholar 

  44. Luo YR, Huang CX, Yi GUO, Wang QY (2012) Energy-based prediction of low cycle fatigue life of high-strength structural steel. J Iron Steel Res Int 19(10)

  45. Mortazavian S, Fatemi A (2015) Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review. Int J Fatigue 70:297–321

    Article  CAS  Google Scholar 

  46. Bernasconi A, Kulin RM (2009) Effect of frequency upon fatigue strength of a short glass fiber reinforced polyamide 6: a superposition method based on cyclic creep parameters. Polym Compos 30(2):154–161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the sincere cooperation of the members of the Tribology Laboratory of the Indian Institute of Technology, Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Ranjan Guru.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guru, S.R., Sarangi, M. Multicycle indentation based fatigue and creep study of polymers. J Polym Res 30, 401 (2023). https://doi.org/10.1007/s10965-023-03774-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03774-8

Keywords

Navigation