Skip to main content
Log in

Epoxidation modification of strictly alternating copolymer via living and controlled anionic alternating copolymerization of 1,3-pentadiene and styrene derivatives

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Styrene/1,3-diene copolymers are widely used in rubber tires, adhesives, waterproof materials, automotive parts and others. However, their oil resistance, compatibility with polar materials, and poor adhesion limit their applications. Polarization modification strategy can further expand the application field of such materials. In this paper, a series of strictly alternating copolymers were synthesized in cyclohexane via living and controlled anionic alternating copolymerization of styrene derivatives (including styrene (ST), p-methylstyrene (MST), p-tert-butylstyrene (TBS), and 1,1-diphenylethylene (DPE)) with 1,3-pentadiene (PD) using n-BuLi initiator. The above-mentioned alternating copolymers were epoxidized in cycloamyl methyl ether (CPME, green solvent) using m-Chloroperoxybenzoic acid (m-CPBA) as the oxygen source. The 1H NMR and FTIR results showed that the degree of epoxidation (DE) of the alternating copolymers was controllable and the cross-linking gels can be avoided (determined by solubility experiment), and the DE of nearly 100% could be achieved by optimizing processes. As for these PD-based alternating copolymers, the type of substituents on rigid benzene rings has a certain impact on the epoxidation rate as well as the DE. DSC results showed that not only the high steric hindrance groups in polymer side chains but also the epoxidation strategy can greatly improve the heat resistance of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data reported in this work will be made available at reasonable request.

References

  1. Lutz J-F (2010) Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym Chem 1(1):55–62. https://doi.org/10.1039/B9PY00329K

    Article  CAS  Google Scholar 

  2. Ntetsikas K, Ladelta V, Bhaumik S et al (2022) Quo Vadis Carbanionic polymerization? ACS Polym Au 3(2):158–181. https://doi.org/10.1021/acspolymersau.2c00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baskaran D, Müller AHE (2007) Anionic vinyl polymerization—50 years after Michael Szwarc. Prog Polym Sci 32(2):173–219. https://doi.org/10.1016/j.progpolymsci.2007.01.003

    Article  CAS  Google Scholar 

  4. Dhanorkar RJ, Mohanty S, Gupta VK (2021) Synthesis of functionalized styrene butadiene rubber and its applications in SBR–silica composites for high performance tire applications. Ind Eng Chem Res 60(12):4517–4535. https://doi.org/10.1021/acs.iecr.1c00013

    Article  CAS  Google Scholar 

  5. Politakos N, Kortaberria G (2018) Exploring the self-assembly capabilities of ABA-Type SBS, SIS, and their analogous hydrogenated copolymers onto different nanostructures using atomic force microscopy. Materials 11(9):1529. https://doi.org/10.3390/ma11091529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jing B, Dai W, Chen S et al (2007) Mechanical behavior and fracture toughness evaluation of K resin grafted with maleic anhydride compatibilized polycarbonate/K resin blends. Mater Sci Eng A 444(1):84–91. https://doi.org/10.1016/j.msea.2006.08.036

    Article  CAS  Google Scholar 

  7. Han CD, Lee KM, Choi S et al (2002) Effect of saturation of polydienes with varying microstructures on the phase behavior of poly(vinylcyclohexane)/poly(ethylene-alt-propylene) and poly(vinylcyclohexane)/poly(ethylene-co-1-butene) blends. Macromolecules 35(21):8045–8055. https://doi.org/10.1021/ma0208178

    Article  CAS  Google Scholar 

  8. Tsiang RC-c, Yang W-s, Tsai M-d (1999) Hydrogenation of polystyrene-b-polybutadiene-b-polystyrene block copolymers using a metallocene/n-butyllithium catalyst – the role of n-butyllithium. Polymer 40(23):6351–6360. https://doi.org/10.1016/S0032-3861(98)00840-4

    Article  CAS  Google Scholar 

  9. Han CD, Choi S, Lee KM et al (2004) Effect of the microstructure of polydiene block on order – disorder transition in diblock copolymers containing polystyrene block or poly(vinylcyclohexane) block. Macromolecules 37(19):7290–7300. https://doi.org/10.1021/ma030544w

    Article  CAS  Google Scholar 

  10. Cai Y, Lu J, Jing G et al (2017) High-glass-transition-temperature hydrocarbon polymers produced through cationic cyclization of diene polymers with various microstructures. Macromolecules 50(19):7498–7508. https://doi.org/10.1021/acs.macromol.7b01075

    Article  CAS  Google Scholar 

  11. Hsiue G-H, Yang J-M (1990) Epoxidation of styrene–butadiene–styrene block copolymer and use for gas permeation. J Polym Sci Part A Polym Chem 28(13):3761–3773. https://doi.org/10.1002/pola.1990.080281319

    Article  CAS  Google Scholar 

  12. Natalello A, Hall JN, Eccles EAL et al (2011) Kinetic control of monomer sequence distribution in living anionic copolymerisation. Macromol Rapid Commun 32(2):233–237. https://doi.org/10.1002/marc.201000482

    Article  CAS  PubMed  Google Scholar 

  13. Steube M, Johann T, Hübner H et al (2020) Tetrahydrofuran: more than a “randomizer” in the living anionic copolymerization of styrene and isoprene: kinetics, microstructures, morphologies, and mechanical properties. Macromolecules 53(13):5512–5527. https://doi.org/10.1021/acs.macromol.0c01022

    Article  CAS  Google Scholar 

  14. Zhao Z, Shen H, Sui K et al (2018) Preparation of periodic copolymers by living anionic polymerization mechanism assisted with a versatile programmed monomer addition mode. Polymer 137:364–369. https://doi.org/10.1016/j.polymer.2017.12.070

    Article  CAS  Google Scholar 

  15. Wadgaonkar SP, Wagner M, Müller AHE et al (2023) Anionic polymerization of 4-Allyldimethylsilylstyrene: versatile polymer scaffolds for post-polymerization modification. Macromolecules 56(3):1053–1064. https://doi.org/10.1021/acs.macromol.2c02202

    Article  CAS  Google Scholar 

  16. Liu K, Ren L, He Q et al (2016) Synthesis of copolymers by living carbanionic alternating copolymerization. Macromol Rapid Commun 37(9):752–758. https://doi.org/10.1002/marc.201600009

    Article  CAS  PubMed  Google Scholar 

  17. Matsumiya Y, Watanabe H, Masubuchi Y et al (2018) Nonlinear elongational rheology of unentangled polystyrene and poly(p-tert-butylstyrene) melts. Macromolecules 51(23):9710–9729. https://doi.org/10.1021/acs.macromol.8b01954

    Article  CAS  Google Scholar 

  18. Ellison CJ, Mundra MK, Torkelson JM (2005) Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass transition – nanoconfinement effect and the cooperativity length scale. Macromolecules 38(5):1767–1778. https://doi.org/10.1021/ma047846y

    Article  CAS  Google Scholar 

  19. Serrano E, Tercjak A, Kortaberria G et al (2006) Nanostructured thermosetting systems by modification with epoxidized styrene – butadiene star block copolymers. effect of epoxidation degree. Macromolecules 39(6):2254–2261. https://doi.org/10.1021/ma0515477

    Article  CAS  Google Scholar 

  20. Re RN, Proessdorf JC, La Clair JJ et al (2019) Tailoring chemoenzymatic oxidation via in situ peracids. Org Biomol Chem 17(43):9418–9424. https://doi.org/10.1039/C9OB01814J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiong Q, Fu Y, Xu J, Gu Z et al (2023) 1,3-pentadiene-assistant living anionic terpolymerization: composition impact on kinetics and microstructure sequence primary analysis. Polymers 15(9):2191. https://doi.org/10.3390/polym15092191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hall JHK, Padias AB (2001) “Charge transfer” polymerization—and the absence thereof! J Polym Sci Part A Polym Chem 39(13):2069–2077. https://doi.org/10.1002/pola.1183

    Article  CAS  Google Scholar 

  23. Liu K, Li A, Yang Z, Jiang A, Xie F et al (2019) Synthesis of strictly alternating copolymers by living carbanionic copolymerization of diphenylethylene with 1,3-pentadiene isomers. Polym Chem 10(14):1787–1794. https://doi.org/10.1039/C9PY00008A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are gratful to YueYang BaLing Petrochemical Chem. Co. Ltd. and ShangHai Petrochemical Chem. Co. Ltd. and for PD isomers and other polymer-grade reagents as gifts. The authors thank JinKui Xia, HongWen Liang, Zhenyin She, Yijiao Chen and JianSong Fu for helpful discussion. We are grateful for the support of the Challenge Cup Project and Internet Plus Innovation Project of Hunan Institute of Technology. We gratefully acknowledge the Changsha Municipal Natural Science Foundation (kq2208219), the financial support of Educational Commission of Hunan Province of China (No. 20B263, 20B268), Natural Science Foundation of Hunan Province of China (No.2019JJ50213, No.2022JJ30279) and National Natural Science Foundation of China (No. 21901070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Li or Kun Liu.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Q., Yang, S., Peng, C. et al. Epoxidation modification of strictly alternating copolymer via living and controlled anionic alternating copolymerization of 1,3-pentadiene and styrene derivatives. J Polym Res 30, 326 (2023). https://doi.org/10.1007/s10965-023-03708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03708-4

Keywords

Navigation