Skip to main content
Log in

Preparation of stereocomplex powder from polycondensation poly(L-lactic acid) and poly(D-lactic acid) for use as a nucleating agent of high-molecular-weight poly(L-lactide)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

High-molecular-weight poly(L-lactide) (HMW-PLLA), which is a biocompatible, biodegradable, and bio-based polymer, is an alternative to traditional petroleum-based plastics. However, its poor crystallizing ability limits its widespread application. In this paper, low-molecular-weight poly(L-lactic acid) (LMW-PLLA) and poly(D-lactic acid) (LMW-PDLA) synthesized through polycondensation of L-lactic acid and D-lactic acid, respectively, were used to prepare stereocomplex poly(lactic acid) (scPLA) powder using precipitation technique. Nucleation efficiency of the obtained scPLA powder was investigated by melt blending with the HMW-PLLA. The scPLA powder was nearly spherical in shape, had a single melting peak at 205 °C and exhibited complete stereocomplex crystallites. According to the differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) analyses, the added scPLA powder improved the crystallization of HMW-PLLA and increased the crystallinity content of HMW-PLLA. Scanning electron microscopy (SEM) showed good phase compatibility between dispersed scPLA particles and HMW-PLLA matrices. The addition of scPLA powder had no significant effect on the tensile properties of the HMW-PLLA matrix. In conclusion, scPLA powder prepared from blending of polycondensation LMW-PLLA and LMW-PDLA showed a promising behavior to enhance the crystallized ability of HMW-PLLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Rotiman J, Schroeder A (2018) Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J 340:9–14

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mishra RK, Ha SK, Verma K, Tiwari SK (2018) Recent progress in selected bio-nanomaterials and their engineering applications: An overview. J Sci: Adv Mater Dev 3:263–288

    Google Scholar 

  3. Tosakul T, Suetong P, Chanthot P, Pattamaprom C (2022) Degradation of polylactic acid and polylactic acid/natural rubber blown films in aquatic environment. J Polym Res 29:242

    Article  CAS  Google Scholar 

  4. Sun Y, Zheng Z, Wang Y, Yang B, Wang J, Mu W (2022) PLA composites reinforced with rice residues or glass fiber—a review of mechanical properties, thermal properties, and biodegradation properties. J Polym Res 29:422

    Article  CAS  Google Scholar 

  5. Saeidlou S, Huneault MA, Li H, C.B. Park CB, (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  6. Jin FL, Hu RR, Park SJ (2019) Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review. Coms B Eng 164:287–296

    Article  CAS  Google Scholar 

  7. Pan H, Kong J, Chen Y, Zhang H, Dong L (2019) Improved heat resistance properties of poly(l-lactide)/basalt fiber biocomposites with high crystallinity under forming hybrid-crystalline morphology. Int J Biol Macromol 122:848–856

    Article  CAS  PubMed  Google Scholar 

  8. Tábi T, Ageyeva T, Kovács JG (2021) Improving the ductility and heat deflection temperature of injection molded Poly(lactic acid) products: A comprehensive review. Polym Test 101:107282

    Article  Google Scholar 

  9. Ding Y, Zhang C, Luo C, Chen Y, Zhou Y, Yao B, Dong L, Du X, Ji J. (2021) Effect of talc and diatomite on compatible, morphological, and mechanical behavior of PLA/PBAT blends. e-Polymers 21:234−243

  10. Thongsomboon W, Srihanam P, Baimark Y (2023) Preparation of flexible poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)/talcum/thermoplastic starch ternary composites for use as heat-resistant and single-use bioplastics. Int J Biol Macromol 230:123172

    Article  CAS  PubMed  Google Scholar 

  11. Srisuwan Y, Baimark Y (2022) Synergistic effects of PEG middle-blocks and talcum on crystallizability and thermomechanical properties of flexible PLLA-b-PEG-b-PLLA bioplastic. e-Polymers 22(1):389−398

  12. Liu H, Hu J, Zhang Y, Zhao J, Wang X, Song J (2023) A dual role of D-Sorbitol in crystallizing and processing poly (lactic acid). J Polym Res 30:102

    Article  CAS  Google Scholar 

  13. Long J, Tianfeng S, Pengwu X, Xiyuan Z, Xiaojie L, Weifu D, Piming M, Mingqing C (2016) Crystallization modification of poly(lactide) by using nucleating agents and stereocomplexation. e-Polymers 16(1):1−13

  14. Simmons H, Tiwary P, Colwell JE, Marianna Kontopoulou M (2019) Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing. Polym Degrad Stab 166:248–257

    Article  CAS  Google Scholar 

  15. Zhang X, Meng L, Li G, Liang N, Zhang J, Zhu Z, Wang R (2016) Effect of nucleating agents on the crystallization behavior and heat resistance of poly(l-lactide). J Appl Polym Sci 133:42999

    Google Scholar 

  16. Yu W, Wang X, Ferraris E, Zhang J (2019) Melt crystallization of PLA/Talc in fused filament fabrication. Mater Des 182:108013

    Article  CAS  Google Scholar 

  17. Shieh YT, Twu YK, Su CC, Lin RH, Liu GL (2010) Crystallization kinetics study of poly(L-lactic acid)/carbon nanotubes nanocomposites. J Polym Sci Part B: Polym Phys 48:983–989

    Article  CAS  Google Scholar 

  18. Wu N, Wang H (2013) Effect of zinc phenylphosphonate on the crystallization behavior of poly(L-lactide) J Appl Polym Sci 130(4):2744−2752

  19. Shi X, Jing Z, Zhang G (2018) Influence of PLA stereocomplex crystals and thermal treatment temperature on the rheology and crystallization behavior of asymmetric poly(L-Lactide)/poly(D-lactide) blends. J Polym Res 25:71

    Article  Google Scholar 

  20. Cai YH, Zhao LS, Tian LL (2017) Investigating the crystallization, melting behavior, and thermal stability of poly(L-lactic acid) using aromatic isoniazid derivative as nucleating agent. Polym Bull 74:3751–3764

    Article  CAS  Google Scholar 

  21. Tsuji H (2016) Poly(lactic acid) stereocomplexes: A decade of progress. Adv Drug Deliv Rev 107:97–135

    Article  CAS  PubMed  Google Scholar 

  22. Luo F, Fortenberry A, Ren J, Qiang Z (2020) Recent progress in enhancing poly(lactic acid) stereocomplex formation for material property improvement. Front Chem 8:688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baimark Y, Rungseesantivanon W, Prakymoramas N (2022) Preparation of stereocomplex-polylactide powder by precipitation method for potential use as nucleating agents in fully-biodegradable poly(L-lactide) composites. Mater Today Commun 33:104539

    Article  CAS  Google Scholar 

  24. Baimark Y, Srihanam P, Srisuwan Y, Phromsopha T (2022) Enhancement in crystallizability of poly(L-lactide) using stereocomplex-polylactide powder as a nucleating agent. Polymers 14(19):4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murariu M, Dubois P (2016) PLA composites: From production to properties. Adv Drug Deliv Rev 107:17–46

    Article  CAS  PubMed  Google Scholar 

  26. Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F (2018) Polylactic acid blends: The future of green, light and tough. Prog Polym Sci 85:83–127

    Article  CAS  Google Scholar 

  27. Chauliac D, Pullammanappallil PC, Ingram LO, Shanmugam KT (2020) A combined thermochemical and microbial process for recycling polylactic acid polymer to optically pure L-lactic acid for reuse. J Polym Environ 28:1503–1512

    Article  CAS  Google Scholar 

  28. Baimark Y, Pasee S, Rungseesantivanon W, Prakymoramas N (2019) Flexible and high heat-resistant stereocomplex PLLA-PEG-PLLA/PDLA blends prepared by melt process: effect of chain extension. J Polym Res 26:218

    Article  Google Scholar 

  29. Khwanpipat T, Seadan M, Suttiruengwong S (2018) Effect of PDLA and Amide Compounds as Mixed Nucleating Agents on Crystallization Behaviors of Poly (l-lactic Acid). Materials 11(7):1139

    Article  PubMed  PubMed Central  Google Scholar 

  30. Masutani K, Kobayashi K, Kimura Y, Lee CW (2018) Properties of stereo multi-block polylactides obtained by chain-extension of stereo tri-block polylactides consisting of poly(L-lactide) and poly(D-lactide). J Polym Res 25:74

    Article  Google Scholar 

  31. Shao J, Guo Y, Ye S, Xie B, Xu Y, Hou H (2017) The morphology and growth of PLA stereocomplex in PLLA/PDLA blends with low molecular weights. Polym Sci Ser A 59:116–123

    Article  CAS  Google Scholar 

  32. Chen P, Yu K, Wang Y, Wang W, Zhou H, Li H, Mi J, Wang X (2018) The effect of composite nucleating agent on the crystallization behavior of branched poly(lactic acid). J Polym Environ 26:3718–3730

    Article  CAS  Google Scholar 

  33. Cuénoud M, Bourban P-E, Plummer CJG, Månson JAE (2011) Plasticization of poly-L-lactide for tissue engineering. J Appl Polym Sci 121(4):2078–2088

    Article  Google Scholar 

  34. Yoo HM, Jeong SY, Choi SW (2021) Analysis of the rheological property and crystallization behavior of polylactic acid (IngeoTM Biopolymer 4032D) at different process temperatures. e-Polymers 21:702−709

  35. Li Y, Han C (2012) Isothermal and nonisothermal cold crystallization behaviors of asymmetric poly(L-lactide)/poly(D-lactide) blends. Ind Eng Chem Res 51:15927–15935

    Article  CAS  Google Scholar 

  36. Jalali A, Huneault MA, Elkoun S (2016) Effect of thermal history on nucleation and crystallization of poly(lactic acid). J Mater Sci 51:7768–7779

    Article  CAS  Google Scholar 

  37. Li S, Luo C, Tang F, Xiao W, Fang M, Sun J, Chen W (2022) Effect of polyethylene glycol modified MWCNTs-OH on the crystallization of PLLA and its stereocomplex. J Polym Res 29:162

    Article  CAS  Google Scholar 

  38. Pan H, Wang X, Jia S, Lu Z, Bian J, Yang H, Han L, Huiliang Zhang H (2021) Fiber-induced crystallization in polymer composites: a comparative study on poly(lactic acid) composites filled with basalt fiber and fiber powder. Int J Biol Macromol 183:45–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research project is financially supported by Thailand Science Research and Innovation (TSRI). YB is also grateful to the partially support provided by the Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yodthong Baimark.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baimark, Y., Srihanam, P., Phromsopha, T. et al. Preparation of stereocomplex powder from polycondensation poly(L-lactic acid) and poly(D-lactic acid) for use as a nucleating agent of high-molecular-weight poly(L-lactide). J Polym Res 30, 302 (2023). https://doi.org/10.1007/s10965-023-03681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03681-y

Keywords

Navigation