Skip to main content
Log in

Improved pyroelectric effect in PVDF/BaTiO3 composite flexible films mediated by enhanced β – PVDF phase formation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Ferroelectric films have been widely studied for their energy harvesting applications and flexible ferroelectric films for their piezoelectric energy harvesting. In this work, we explore tuning the PVDF/BaTiO3 composite flexible films for pyroelectric energy conversion applications. This work reports the influence of barium titanate particles (BaTiO3) in the formation of β-phase polyvinylidene fluoride (PVDF) on PVDF/BaTiO3 composite films based on Fourier transform infrared and Raman spectroscopic studies. PVDF/BaTiO3 composite films with different weight percentages of BaTiO3 were prepared by spin coating technique. Fourier transform infrared spectroscopy and Raman spectroscopic analysis of PVDF/BaTiO3 composite films indicated that the polar β-phase of PVDF nucleated by the incorporation of BaTiO3 through CF2 interaction with BaTiO3 particles as inferred from the filler percentage dependence study of vibration modes. The 15 wt% concentration of PVDF with 5 wt% of BaTiO3 composite film has higher β-phase content and better crystallinity. The improved film quality, in turn, enhances the pyroelectric coefficient and pyroelectric energy conversion figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data are available from the author upon reasonable request.

References

  1. Liu Y, Zhang B, Xu W, Haibibu A, Han Z, Lu W et al (2020) Chirality-induced relaxor properties in ferroelectric polymers. Nat Mater 19(11):1169–1174. https://doi.org/10.1038/s41563-020-0724-6

    Article  CAS  PubMed  Google Scholar 

  2. Song J, Lu H, Foreman K, Li S, Tan L, Adenwalla S et al (2016) Ferroelectric polymer nanopillar arrays on flexible substrates by reverse nanoimprint lithography. J Mater Chem C 4(25):5914–5921. https://doi.org/10.1039/C6TC01848C

    Article  CAS  Google Scholar 

  3. Sorayani Bafqi MS, Bagherzadeh R, Latifi M (2015) Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J Polym Res 22(7):130. https://doi.org/10.1007/s10965-015-0765-8

    Article  CAS  Google Scholar 

  4. Bužarovska A, Kubin M, Makreski P, Zanoni M, Gasperini L, Selleri G et al (2022) PVDF/BaTiO3 composite foams with high content of β phase by thermally induced phase separation (TIPS). J Polym Res 29(7):272. https://doi.org/10.1007/s10965-022-03133-z

    Article  CAS  Google Scholar 

  5. Yao M, Cheng Y, Zhou Z, Liu M (2020) Recent progress on the fabrication and applications of flexible ferroelectric devices. J Mater Chem C 8(1):14–27. https://doi.org/10.1039/C9TC04706A

    Article  CAS  Google Scholar 

  6. Gupta S, Bhunia R, Fatma B, Maurya D, Singh D, Prateek et al (2019) Multifunctional and flexible polymeric nanocomposite films with improved ferroelectric and piezoelectric properties for energy generation devices. ACS Appl Energy Mater 2(9):6364–6374. https://doi.org/10.1021/acsaem.9b01000

    Article  CAS  Google Scholar 

  7. Park K-I, Son JH, Hwang G-T, Jeong CK, Ryu J, Koo M et al (2014) Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26(16):2514–2520. https://doi.org/10.1002/adma.201305659

    Article  CAS  PubMed  Google Scholar 

  8. Yu H, Chung C-C, Shewmon N, Ho S, Carpenter JH, Larrabee R et al (2017) Flexible inorganic ferroelectric thin films for nonvolatile memory devices. Adv Funct Mater 27(21):1700461. https://doi.org/10.1002/adfm.201700461

    Article  CAS  Google Scholar 

  9. Ko YJ, Kim DY, Won SS, Ahn CW, Kim IW, Kingon AI et al (2016) Flexible Pb(Zr0.52Ti0.48)O3 films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments. ACS Appl Mater Interfaces 8(10):6504–6511. https://doi.org/10.1021/acsami.6b00054

    Article  CAS  PubMed  Google Scholar 

  10. Athira BS, George A, Vaishna Priya K, Hareesh US, Gowd EB, Surendran KP et al (2022) High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-BaTiO3 nanofibers for self-powered vibration sensing applications. ACS Appl Mater Interfaces 14(39):44239–44250. https://doi.org/10.1021/acsami.2c07911

    Article  CAS  PubMed  Google Scholar 

  11. Wan C, Bowen CR (2017) Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure. J Mater Chem A 5(7):3091–3128. https://doi.org/10.1039/C6TA09590A

    Article  CAS  Google Scholar 

  12. Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A, Dames C et al (2018) Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat Mater 17(5):432–438. https://doi.org/10.1038/s41563-018-0059-8

    Article  CAS  PubMed  Google Scholar 

  13. Anwar S, Asadi K (2019) One-dimensional polarization dynamics in ferroelectric polymers. ACS Macro Lett 8(5):525–529. https://doi.org/10.1021/acsmacrolett.9b00166

    Article  CAS  PubMed  Google Scholar 

  14. Tomer V, Manias E, Randall CA (2011) High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoride-hexafluoropropylene). J Appl Phys 110(4):044107. https://doi.org/10.1063/1.3609082

    Article  CAS  Google Scholar 

  15. Meng N, Ren X, Zhu X, Wu J, Yang B, Gao F et al (2020) Multiscale understanding of electric polarization in poly(vinylidene fluoride)-based ferroelectric polymers. J Mater Chem C 8(46):16436–16442. https://doi.org/10.1039/D0TC04310A

    Article  CAS  Google Scholar 

  16. Yousry YM, Yao K, Chen S, Liew WH, Ramakrishna S (2018) Mechanisms for enhancing polarization orientation and piezoelectric parameters of PVDF nanofibers. Adv Electron Mater 4(6):1700562. https://doi.org/10.1002/aelm.201700562

    Article  CAS  Google Scholar 

  17. Wu Y, Du X, Gao R, Li J, Li W, Yu H et al (2019) Self-polarization of PVDF film triggered by hydrophilic treatment for pyroelectric sensor with ultra-low piezoelectric noise. Nanoscale Res Lett 14(1):72. https://doi.org/10.1186/s11671-019-2906-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang H, Zhou C, Liu X, Zhou Q, Chen G, Wang H et al (2012) Structural, microstructural and electrical properties of BiFeO3–BaTiO3 ceramics with high thermal stability. Mater Res Bull 47(12):4233–4239. https://doi.org/10.1016/j.materresbull.2012.09.027

    Article  CAS  Google Scholar 

  19. Lin Z-H, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL (2012) BaTiO3 nanotubes-based flexible and transparent nanogenerators. J Phys Chem Lett 3(23):3599–3604. https://doi.org/10.1021/jz301805f

    Article  CAS  PubMed  Google Scholar 

  20. Yu K, Niu Y, Xiang F, Zhou Y, Bai Y, Wang H (2013) Enhanced electric breakdown strength and high energy density of barium titanate filled polymer nanocomposites. J Appl Phys 114(17):174107. https://doi.org/10.1063/1.4829671

    Article  CAS  Google Scholar 

  21. Yakout SM (2020) Influence of Na and Na/Fe doping on the dielectric constant, ferromagnetic and sunlight photocatalytic properties of BaTiO3 perovskite. J Solid State Chem 290:121517. https://doi.org/10.1016/j.jssc.2020.121517

    Article  CAS  Google Scholar 

  22. López MdCB, Fourlaris G, Rand B, Riley FL (1999) Characterization of barium titanate powders: Barium carbonate identification. J Am Ceram Soc 82(7):1777–1786. https://doi.org/10.1111/j.1151-2916.1999.tb01999.x

    Article  Google Scholar 

  23. Chipara D, Kuncser V, Lozano K, Alcoutlabi M, Ibrahim E, Chipara M (2020) Spectroscopic investigations on PVDF-Fe2O3 nanocomposites. J Appl Polym Sci 137(30):48907. https://doi.org/10.1002/app.48907

    Article  CAS  Google Scholar 

  24. Gong X, Chen Y, Tang C-Y, Law W-C, Chen L, Wu C et al (2018) Crystallinity and morphology of barium titanate filled poly(vinylidene fluoride) nanocomposites. J Appl Polym Sci 135(48):46877. https://doi.org/10.1002/app.46877

    Article  CAS  Google Scholar 

  25. Smith MB, Page K, Siegrist T, Redmond PL, Walter EC, Seshadri R et al (2008) Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J Am Chem Soc 130(22):6955–6963. https://doi.org/10.1021/ja0758436

    Article  CAS  PubMed  Google Scholar 

  26. Lee H-W, Moon S, Choi C-H, Kim DK (2012) Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method. J Am Ceram Soc 95(8):2429–2434. https://doi.org/10.1111/j.1551-2916.2012.05085.x

    Article  CAS  Google Scholar 

  27. Brutchey RL, Morse DE (2006) Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew Chem Int Ed 45(39):6564–6566. https://doi.org/10.1002/anie.200602571

    Article  CAS  Google Scholar 

  28. Hu J, Zhang S, Tang B (2021) Three-dimensionally ordered macroporous BaTiO3 framework-reinforced polymer composites with improved dielectric properties. SN Appl Sci 3(1):52. https://doi.org/10.1007/s42452-021-04166-7

    Article  CAS  Google Scholar 

  29. Xu F, Zhang K, Zhou Y, Qu Z, Wang H, Zhang Y et al (2017) Facile preparation of highly oriented poly(vinylidene fluoride) uniform films and their ferro- and piezoelectric properties. RSC Adv 7(28):17038–17043. https://doi.org/10.1039/C7RA00586E

    Article  CAS  Google Scholar 

  30. Constantino CJ, Job AE, Simões RD, Giacometti JA, Zucolotto V, Oliveira ON Jr et al (2005) Phase transition in poly(vinylidene fluoride) investigated with micro-Raman spectroscopy. Appl Spectrosc 59(3):275–279. https://doi.org/10.1366/0003702053585336

    Article  CAS  PubMed  Google Scholar 

  31. Qi Y, Pan L, Ma L, Liao P, Ge J, Zhang D et al (2013) Investigation on FT-IR spectra and dielectric property of PVDF/inorganic composites. J Mater Sci: Mater Electron 24(5):1446–1450. https://doi.org/10.1007/s10854-012-0948-6

    Article  CAS  Google Scholar 

  32. Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z (2009) Formation mechanism of β-Phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874. https://doi.org/10.1021/ma901765j

    Article  CAS  Google Scholar 

  33. Pavlović VP, Pavlović VB, Vlahović B, Božanić DK, Pajović JD, Dojčilović R et al (2013) Structural properties of composites of polyvinylidene fluoride and mechanically activated BaTiO3 particles. Phys Scr T157:014006. https://doi.org/10.1088/0031-8949/2013/T157/014006

    Article  CAS  Google Scholar 

  34. Wang H, Guo Z, Hao W, Sun L, Zhang Y, Cao E (2019) Ethanol sensing characteristics of BaTiO3/LaFeO3 nanocomposite. Mater Lett 234:40–44. https://doi.org/10.1016/j.matlet.2018.09.058

    Article  CAS  Google Scholar 

  35. Rana DK, Singh SK, Kundu SK, Roy S, Angappane S, Basu S (2019) Electrical and room temperature multiferroic properties of polyvinylidene fluoride nanocomposites doped with nickel ferrite nanoparticles. New J Chem 43(7):3128–3138. https://doi.org/10.1039/C8NJ04755C

    Article  CAS  Google Scholar 

  36. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7(25):15382–15389. https://doi.org/10.1039/C7RA01267E

    Article  CAS  Google Scholar 

  37. Singh P, Borkar H, Singh BP, Singh VN, Kumar A (2014) Ferroelectric polymer-ceramic composite thick films for energy storage applications. AIP Adv 4(8):087117. https://doi.org/10.1063/1.4892961

    Article  CAS  Google Scholar 

  38. Jiang Y, Zhou M, Shen Z, Zhang X, Pan H, Lin Y-H (2021) Ferroelectric polymers and their nanocomposites for dielectric energy storage applications. APL Mater 9(2):020905. https://doi.org/10.1063/5.0039126

    Article  CAS  Google Scholar 

  39. Sharma M, Quamara JK, Gaur A (2018) Behaviour of multiphase PVDF in (1–x)PVDF/(x)BaTiO3 nanocomposite films: structural, optical, dielectric and ferroelectric properties. J Mater Sci: Mater Electron 29(13):10875–10884. https://doi.org/10.1007/s10854-018-9163-4

    Article  CAS  Google Scholar 

  40. Dang Y-M, Zheng M-S, Zha J-W (2018) Improvements of dielectric properties and energy storage performances in BaTiO3/PVDF nanocomposites by employing a thermal treatment process. J Adv Dielectr 08(06):1850043. https://doi.org/10.1142/s2010135x18500431

    Article  Google Scholar 

  41. Mangalam RVK, Agar JC, Damodaran AR, Karthik J, Martin LW (2013) Improved pyroelectric figures of merit in compositionally graded PbZr1–xTixO3 thin films. ACS Appl Mater Interfaces 5(24):13235–13241. https://doi.org/10.1021/am404228c

    Article  CAS  PubMed  Google Scholar 

  42. Bowen CR, Taylor J, LeBoulbar E, Zabek D, Chauhan A, Vaish R (2014) Pyroelectric materials and devices for energy harvesting applications. Energy Environ Sci 7(12):3836–3856. https://doi.org/10.1039/C4EE01759E

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the DST-SERB project (ECR/2017/002600) for financial support. We also wish to thank the Department of Chemistry DST-FIST, Nanotechnology Research center and Department of Physics and Nanotechnology and SCIF for the facilities at SRM IST. We acknowledge SRM Institute of Science and Technology for its support and facilities. P. Mandal and K. Malleswari acknowledge the financial support of the Early Career Research Grant from the Department of Science and Technology (DST)—Science and Engineering Research Board (SERB) (Grant No. ECR/2018/001252).

Funding

This study was funded by DST-SERB (grant numbers ECR/2017/002600 and ECR/2018/001252).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pranab Mandal or R. V. K. Mangalam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10965_2023_3669_MOESM1_ESM.pdf

Supplementary file1 Labelling of films prepared, FTIR and Raman spectra of the films prepared, β-Phase content from intensity ratio, BaTiO3 weight percentage dependence of vibrational modes, Differential scanning calorimetry analysis. (PDF 1149 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhiogade, A., Nagamalleswari, K., Mandal, P. et al. Improved pyroelectric effect in PVDF/BaTiO3 composite flexible films mediated by enhanced β – PVDF phase formation. J Polym Res 30, 288 (2023). https://doi.org/10.1007/s10965-023-03669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03669-8

Keywords

Navigation