Skip to main content

Advertisement

Log in

Biodegradation and thermal-oxidative degradation of propanediol based poly (lactic acid) oligomers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work investigated the biodegradation and thermal degradation, of PLA oligomers with specific molecular weights, i.e., 800, 4000, and 10000 g/mol, coded as PLA800, PLA4000 and PLA10000, synthesized through ring-opening polymerization of lactide using defined amounts of 1,2-propanediol. From the biodegradation in soil, lower molecular weight oligomers degraded faster. The chemical changes followed through FTIR evidenced increase in OH bands, a shoulder around 1635 cm-1 due to amides bonds (N-H bending) which may be sign of enzymes and biofilm attached on the specimen surface, signs of ester bonds cleavage were also verified. Thermal degradations were investigated under nitrogen, synthetic air, and oxygen atmospheres. In general, higher heating rates provided higher thermal stability and higher degradation rates, with lower molecular weight PLA degrading faster. Distinct trends were verified under oxygen atmosphere due to complex reactions during thermal-oxidative degradation that headed to different molecular weight dependence and activation energy, which was computed using Friedman and Flynn-Ozawa-Wall (OFW) models. Friedman based activation energy is higher as it employs instantaneous rate values, and it is assumed as more realistic model, once activation energy based on OFW is derived assuming constant character along with the whole degradation and thus providing lower accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. UNEP. Green Economy. Available from: https://www.unep.org/regions/asia-and-pacific/regional-initiatives/supporting-resource-efficiency/green-economy

  2. HIll C. The Advantages of Biodegradable Products. Available from: https://www.livestrong.com/article/131647-what-are-some-uses-composite-materials/

  3. Bahl S, Dolma J, Singh JJ, Sehgal S (2021) Mater Today Proc 39:31

    Article  CAS  Google Scholar 

  4. Leja K, Lewandowicz G (2010) Polish J Environ Stud 19

  5. Vatansever E, Arslan D, Sarul DS, Kahraman Y, Nofar M (2020) Int J Biol Macromol 154:276

    Article  CAS  PubMed  Google Scholar 

  6. Zahir L, Kida T, Tanaka R, Nakayama Y, Shiono T, Kawasaki N, Yamano N, Nakayama A (2021) Life 11:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris ND, Vlachopoulos A, Koumentakou I, Bikiaris DN (1822) Polymers 2021:13

    Google Scholar 

  8. Ortiz-Aldaco MG, Báez JE, Jiménez-Halla JOC (2020) RSC Adv 10:30815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jędrzkiewicz D, Czeluśniak I, Wierzejewska M, Szafert S, Ejfler J (2015) J Mol Catal A Chem 396:155

    Article  Google Scholar 

  10. Kricheldorf HR, Weidner SM (2021) J Polym Sci 59:439

    Article  CAS  Google Scholar 

  11. Lecomte P, Jérôme C (2011) Synthetic biodegradable polymers 173

  12. Zhao H (2018) J Chem Technol Biotechnol 93:9

    Article  CAS  PubMed  Google Scholar 

  13. Gao C, Ma C, Xu P (2011) Biotechnol Adv 29:930

    Article  CAS  PubMed  Google Scholar 

  14. Siebert HM, Wilker JJ (2019) European Polym J 113:321

    Article  CAS  Google Scholar 

  15. Lv S, Zhang Y, Gu J, Tan H (2017) Colloids Surf B Biointerf 159:800

    Article  CAS  Google Scholar 

  16. Kister G, Cassanas G, Vert M (1998) Polymer 39:267

    Article  CAS  Google Scholar 

  17. Pamuła E, Błażewicz M, Paluszkiewicz C, Dobrzyński P (2001) J Mol Struct 596:69

    Article  Google Scholar 

  18. Sedničková M, Pekařová S, Kucharczyk P, Bočkaj J, Janigová I, Kleinová A, Jochec-Mošková D, Omaníková L, Perďochová D, Koutný M (2018) Int J Biol Macromol 113:434

    Article  PubMed  Google Scholar 

  19. Hablot E, Dharmalingam S, Hayes DG, Wadsworth LC, Blazy C, Narayan R (2014) J Polym Environ 22:417

    Article  CAS  Google Scholar 

  20. Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Polym Test 32:918

    Article  CAS  Google Scholar 

  21. Rudnik E, Briassoulis D (2011) J Polym Environ 19:18

    Article  CAS  Google Scholar 

  22. Pantani R, Sorrentino A (2013) Polym Degrad Stab 98:1089

    Article  CAS  Google Scholar 

  23. Ozkoc G, Kemaloglu S (2009) J Appl Polym Sci 114:2481

    Article  CAS  Google Scholar 

  24. Tokiwa Y, Calabia BP (2006) Appl Microbiol Biotechnol 72:244

    Article  CAS  PubMed  Google Scholar 

  25. Gois GD, Andrade MF, Garcia SM, Vinhas GM, Santos AS, Medeiros ES, Oliveira JE, Almeida YM (2018) Mater Res 20:899

  26. Rudnik E, Briassoulis D (2011) Industrial Crops Prod 33:648

    Article  CAS  Google Scholar 

  27. Palsikowski PA, Kuchnier CN, Pinheiro IF, Morales AR (2018) J Polym Environ 26:330

    Article  CAS  Google Scholar 

  28. Mastral A, Murillo R, Callen M, Garcia T, Snape C (2000) Energ Fuels 14:739

    Article  CAS  Google Scholar 

  29. Mishra RK, Mohanty K (2018) Bioresource Technol 251:63

    Article  CAS  Google Scholar 

  30. Huang L, Chen Y, Liu G, Li S, Liu Y, Gao X (2015) Energy 87:31

    Article  CAS  Google Scholar 

  31. Friedman HL (1964) J Polym Sci Part C Polym Symposia 183

  32. Ozawa T (1881) Bulletin of the chemical society of Japan 1965:38

    Google Scholar 

  33. Lv S, Gu J, Cao J, Tan H, Zhang Y (2015) Int J Biol Macromol 74:297

    Article  CAS  PubMed  Google Scholar 

  34. Jafari SMA, Khajavi R, Goodarzi V, Kalaee M, Khonakdar H (2020) J Appl Polym Sci 137:48466

    Article  CAS  Google Scholar 

  35. Peterson JD, Vyazovkin S, Wight CA (2001) Macromol Chem Phys 202:775

    Article  CAS  Google Scholar 

  36. Lv S, Zhang Y, Tan H (2019) Waste Manag 87:335

    Article  CAS  PubMed  Google Scholar 

  37. Chrissafis K (2010) Thermochimica acta 511:163

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa do Estado da Paraíba (FAPESQ) (Concession term: 017/2019), and the BMBF Client II funding (BestBioPLA, funding number: 033R209A-B). Professor Renate Wellen is CNPq fellow (Number: 307488/2018-7). Katharina Koschek is NanoMatFutur fellow funded by BMBF (Funding number: 03XP0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate M. R. Wellen.

Ethics declarations

Conflict of interest

There is no conflict of interest and all authors have agreed with this submission and they are aware of the content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57259 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, J.J.P., Boskamp, L., Silva, I.D.S. et al. Biodegradation and thermal-oxidative degradation of propanediol based poly (lactic acid) oligomers. J Polym Res 30, 227 (2023). https://doi.org/10.1007/s10965-023-03609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03609-6

Keywords

Navigation