Skip to main content
Log in

Crystallization-driven self-assembly of Poly(methyl methacrylate)-b-Polyethylene-b-Poly(methyl methacrylate) triblock copolymers: aggregation behavior and effects of corona-forming block

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Crystallization-driven self-assembly of poly(methyl methacrylate)-b-polyethylene-b-poly(methyl methacrylate) (PMMA-b-PE-b-PMMA) triblock copolymers in toluene and toluene-chloroform mixture solutions was carried out. It is found that the structure of amorphous corona-forming block, solvent selectivity and crystallization temperature play important roles in regulating the morphology of micelles. First of all, on cooling from a homogenous toluene solution, the linear-shaped PMMA100-b-PE572-b-PMMA100 (E1) and dumbbell-shaped (PMMA3)29-b-PE572-b-(PMMA3)29 (E3) are assembled into “striped disk-like” and “striped lozenge-shaped” micelles respectively, through a stepwise micellization/crystallization process. In the mixed solvent, both E1 and E3 can self-assemble into one-dimensional crystalline “cocoon silk” micelles at a higher crystallization temperature (60 °C and 70 °C, respectively) by the epitaxial crystallization of the unimers. At a lower temperature (30 °C and 50 °C, respectively), the “spindle-like” micelles were assembled due to the stronger crystallization driving force and weaker chain motion ability. In particular, E3 can be further transformed from “spindle-like” micelle to two-dimensional “lozenge-shaped” single crystals (at 30 °C), reflecting the regulatory role of corona-forming blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Ganda S, Stenzel MH (2020) Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog Polym Sci 101:101195

    Article  CAS  Google Scholar 

  2. He WN, Xu JT (2012) Crystallization assisted self-assembly of semicrystalline block copolymers. Prog Polym Sci 37(10):1350–1400

    Article  CAS  Google Scholar 

  3. Maginn SJ (1991) Crystal engineering : the design of organic solids by G. R. Desiraju. J Appl Crystallogr 24(3):265–265

    Article  Google Scholar 

  4. Wang X, Goswami M, Kumar R et al (2012) Morphologies of block copolymers composed of charged and neutral blocks. Soft Matter 8(11):3036–3052

    Article  CAS  Google Scholar 

  5. Fan B, Liu L, Li JH et al (2016) Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block. Soft Matter 12(1):67–76

    Article  CAS  PubMed  Google Scholar 

  6. Zhang T, Xu J (2019) One-dimensional growth kinetics for formation of cylindrical crystalline micelles of block copolymers. Polymer Crystallization 2(2):10047

    Article  Google Scholar 

  7. Kwon Y, Kim KT (2021) Crystallization-driven self-assembly of block copolymers having monodisperse poly(lactic acid)s with defined stereochemical sequences. Macromolecules 54(22):10487–10498

    Article  CAS  Google Scholar 

  8. Su Y, Jiang Y, Liu L et al (2022) Hydrogen-Bond-Regulated platelet micelles by crystallization-driven self-assembly and templated growth for poly(ε-Caprolactone) block copolymers. Macromolecules 55(3):1067–1076

    Article  CAS  Google Scholar 

  9. Lotz B, Kovacs AJ, Bassett GA, Keller A (1966) Properties of copolymers composed of one poly-ethylene-oxide and one polystyrene block: II. Morphology of single crystals. Colloid Polym Sci 209(2):115-128

  10. Cambridge G, Guerin G, Manners I, Winnik MA (2010) Fiberlike micelles formed by living epitaxial growth from blends of polyferrocenylsilane block copolymers. Macromol Rapid Comm 31(9–10):934–938

    Article  CAS  Google Scholar 

  11. Kynaston EL, Gould OEC, Gwyther J et al (2015) Fiber-like micelles from the crystallization-driven self-assembly of poly(3-heptylselenophene)-block-Polystyrene. Macromol Chem Phys 216(6):685–695

    Article  CAS  Google Scholar 

  12. Finnegan JR, Lunn DJ, Gould OEC et al (2014) Gradient crystallization-driven self-assembly: Cylindrical micelles with “Patchy” segmented coronas via the coassembly of linear and brush block copolymers. J Am Chem Soc 136(39):13835–13844

    Article  CAS  PubMed  Google Scholar 

  13. Hamley IW, Fairclough JPA, Terrill NJ et al (1996) Crystallization in oriented semicrystalline diblock copolymers. Macromolecules 29(27):8835–8843

    Article  CAS  Google Scholar 

  14. Lin EK, Gast AP (1996) Semicrystalline diblock copolymer platelets in dilute solution. Macromolecules 29(12):4432–4441

    Article  CAS  Google Scholar 

  15. Richter D, Schneiders D, Monkenbusch M et al (1997) Polymer aggregates with crystalline cores: The system polyethylene-poly(ethylenepropylene). Macromolecules 30(4):1053–1068

    Article  CAS  Google Scholar 

  16. Rajagopal K, Mahmud A, Christian DA et al (2010) Curvature-Coupled hydration of semicrystalline polymer amphiphiles yields flexible worm micelles but favors rigid vesicles: Polycaprolactone-based block copolymers. Macromolecules 43(23):9736–9746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Du ZX, Xu JT, Fan ZQ (2007) Micellar morphologies of poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymers in water with a crystalline Core. Macromolecules 40(21):7633–7637

    Article  CAS  Google Scholar 

  18. Du ZX, Xu JT, Fan ZQ (2008) Regulation of micellar morphology of PCL-b-PEO block copolymers by crystallization temperature. Macromol Rapid Commun 29(6):467–471

    Article  CAS  Google Scholar 

  19. He WN, Xu JT, Du BY et al (2010) Inorganic-Salt-Induced morphological transformation of semicrystalline micelles of PCL-b-PEO block copolymer in aqueous solution. Macromol Chem Phys 211(17):1909–1916

    Article  CAS  Google Scholar 

  20. He WN, Xu JT, Du BY et al (2012) Effect of pH on the micellar morphology of semicrystalline PCL-b-PEO block copolymers in aqueous solution. Macromol Chem Phys 213(9):952–964

    Article  CAS  Google Scholar 

  21. Yang J, He W, Xu J et al (2014) Influence of different inorganic salts on crystallization-driven morphological transformation of PCL-b-PEO micelles in aqueous solutions. Chin J Polym Sci 32(9):1128–1138

    Article  CAS  Google Scholar 

  22. Su M, Huang H, Ma X et al (2013) Poly(2-vinylpyridine)-block-Poly(ϵ-caprolactone) Single Crystals in Micellar Solution. Macromol Rapid Comm 34(13):1067–1071

    Article  CAS  Google Scholar 

  23. Wang J, Zhu W, Peng B, Chen Y (2013) A facile way to prepare crystalline platelets of block copolymers by crystallization-driven self-assembly. Polymer 54(25):6760–6767

    Article  CAS  Google Scholar 

  24. Petzetakis N, Dove AP, O’Reilly RK (2011) Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chem Sci 2(5):955–960

    Article  CAS  Google Scholar 

  25. Petzetakis N, Walker D, Dove AP, O’Reilly RK (2012) Crystallization-Driven sphere-to-rod transition of poly(lactide)-b-poly(acrylic acid) diblock copolymers: mechanism and kinetics. Soft Matter 8(28):7408–7414

    Article  CAS  Google Scholar 

  26. Sun L, Petzetakis N, Pitto-Barry A et al (2013) Tuning the size of cylindrical micelles from poly(l-lactide)-b-poly(acrylic acid) diblock copolymers based on crystallization-driven self-assembly. Macromolecules 46(22):9074–9082

    Article  CAS  Google Scholar 

  27. Pitto-Barry A, Kirby N, Dove AP, O’Reilly RK (2014) Expanding the scope of the crystallization-driven self-assembly of polylactide-containing polymers. Polym Chem 5(4):1427–1436

    Article  CAS  Google Scholar 

  28. Lazzari M, López-Quintela MA (2009) Micellization phenomena in semicrystalline block copolymers: reflexive and critical views on the formation of cylindrical micelles. Macromol Rapid Commun 30(21):1785–1791

    Article  CAS  PubMed  Google Scholar 

  29. Li T, Wang WJ, Liu R et al (2009) Double-Crystalline polyethylene-b-poly(ethylene oxide) with a linear polyethylene block: synthesis and confined crystallization in self-assembled structure formed from aqueous solution. Macromolecules 42(11):3804–3810

    Article  CAS  Google Scholar 

  30. Yu N, Zheng X, Xu Q, He L (2011) Controllable-Induced crystallization of PE-b-PEO on Carbon nanotubes with assistance of supercritical CO2: effect of solvent. Macromolecules 44(10):3958–3965

    Article  CAS  Google Scholar 

  31. Monkenbusch M, Schneiders D, Richter D et al (2000) Aggregation behaviour of PE-PEP copolymers and the winterization of diesel fuel. Physica B: Condensed Matter 276–278:941–943

    Article  Google Scholar 

  32. Schmalz H, Schmelz J, Drechsler M et al (2008) Thermo-Reversible formation of wormlike micelles with a Microphase-separated corona from a semicrystalline triblock terpolymer. Macromolecules 41(9):3235–324

    Article  CAS  Google Scholar 

  33. Yin L, Hillmyer MA (2011) Disklike micelles in water from polyethylene-containing diblock copolymers. Macromolecules 44(8):3021–3028

    Article  CAS  Google Scholar 

  34. Yin L, Lodge TP, Hillmyer MA (2012) A stepwise, “Micellization-Crystallization” route to oblate ellipsoidal, cylindrical, and bilayer micelles with polyethylene cores in water. Macromolecules 45(23):9460–9467

    Article  CAS  Google Scholar 

  35. Zhao Y, Wang L, Xiao A, Yu H (2010) The synthesis of modified polyethylene via coordination polymerization followed by ATRP, RAFT, NMRP or ROP. Progress in Polymer Science 35(10):1195–1216

    Article  CAS  Google Scholar 

  36. Xu JT, Fairclough JPA, Mai SM, Ryan AJ (2003) The effect of architecture on the morphology and crystallization of oxyethylene/oxybutylene block copolymers from micelles in n-hexane. J Mater Chem 13(11):2740–2748

    Article  CAS  Google Scholar 

  37. He Q, Ren J, Ren JK et al (2017) Polymethylene-b-poly(acrylic acid) diblock copolymers: Aggregation and crystallization in the presence of CaCl2. Eur Polym J 95:174–185

    Article  CAS  Google Scholar 

  38. Wang H, Wu C, Xia G et al (2015) Semi-crystalline polymethylene-b-poly(acrylic acid) diblock copolymers: aggregation behavior, confined crystallization and controlled growth of semicrystalline micelles from dilute DMF solution. Soft Matter 11(9):1778–1787

    Article  CAS  PubMed  Google Scholar 

  39. Schmelz J, Karg M, Hellweg T, Schmalz H (2011) General pathway toward crystalline-core micelles with tunable morphology and corona segregation. ACS Nano 5(12):9523–9534

    Article  CAS  PubMed  Google Scholar 

  40. Wurm F, Frey H (2011) Linear–dendritic block copolymers: The state of the art and exciting perspectives. Prog Polym Sci 36(1):1–52

    Article  CAS  Google Scholar 

  41. Lebedeva IO, Zhulina EB, Borisov OV (2019) Self-assembly of linear-dendritic and double dendritic block copolymers: From dendromicelles to dendrimersomes. Macromolecules 52(10):3655–3667

    Article  CAS  Google Scholar 

  42. Wang D, Chen H, Su Y et al (2013) Supramolecular amphiphilic multiarm hyperbranched copolymer: synthesis, self-assembly and drug delivery applications. Polym Chem 4(1):85–94

    Article  CAS  Google Scholar 

  43. Cheng S, Hu Y, Wu X et al (2021) Hierarchical self-assembly of polyethylene midblock copolymers in hot steam: Key role of crystalline and topological structure. Macromol Chem Phys 222(7):2000419

    Article  CAS  Google Scholar 

  44. Garti N, Spernath A, Aserin A, Lutz R (2005) Nano-sized self-assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems. Soft Matter 1(3):206–218

    Article  CAS  PubMed  Google Scholar 

  45. Li Z, Liu R, Mai B et al (2013) Temperature-induced and crystallization-driven self-assembly of polyethylene-b-poly(ethylene oxide) in solution. Polymer 54(6):1663–1670

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Bio-ultrastructure Analysis Laboratory of the Key Laboratory of Applied Marine Biotechnology of the Ministry of Education, Ningbo University provides assistance with testing TEM.

Funding

The Project of the Natural Science Foundation of Ningbo (2019A610149), Natural Science Foundation of Zhejiang Province (LY18B040001) , National Natural Science Foundation of China (52007087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshan Mu.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to infuence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 696 KB)

Supplementary file2 (DOCX 1.55 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Gong, N., Si, X. et al. Crystallization-driven self-assembly of Poly(methyl methacrylate)-b-Polyethylene-b-Poly(methyl methacrylate) triblock copolymers: aggregation behavior and effects of corona-forming block. J Polym Res 30, 223 (2023). https://doi.org/10.1007/s10965-023-03608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03608-7

Keywords

Navigation