Skip to main content
Log in

Enhancing thermal and mechanical properties of polypropylene-nitrile butadiene rubber nanocomposites through graphene oxide functionalization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Recently, the applications in the automotive and packaging sectors have been developed for rubber-toughened Polypropylene (PP) nanocomposites with desired thermal and mechanical properties. In this work, PP/Nitrile butadiene rubber (PP/NBR) blends and nanocomposites containing graphene oxide (GO) and chemically functionalized GO with γ-glycidoxy propyl trimethoxy silane (GPTMS) and aminopropyl triethoxy silane (APTS) were prepared and studied via melt blending process using Brabender mixer. In addition, the effect of three compatibilizer components (PP-g-MAH, PP-g-NH2, and PP-g-OH) on the properties of the systems was also investigated. The intercalation of polymer chains into GO and functionalized GO layers was confirmed by XRD analysis. According to the TGA findings, the addition of GO-APTS, GO-GPTMS, and compatibilizers significantly improved the thermal stability. The incorporation of graphene materials increased the PP/NBR melting and crystallization temperatures, as well as the degree of crystallinity, according to DSC analyses. Moreover, from the mechanical evaluation, PP/NBR/PP-g-NH2/GPTMS-GO exhibited superior Elongation at break and impact resistance compared to the other compatibilized nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boublia A, El S, Lebouachera I, Haddaoui N, Guezzout Z, Ghriga MA, Hasanzadeh M, Benguerba Y, Drouiche N (2022) State - of - the - art review on recent advances in polymer engineering : modeling and optimization through response surface methodology approach. Springer, Berlin Heidelberg

    Google Scholar 

  2. Busico V, Cipullo R (2001) Microstructure of polypropylene. Prog Polym Sci 26:443–533. https://doi.org/10.1016/S0079-6700(00)00046-0

    Article  CAS  Google Scholar 

  3. Pasquini N, Addeo A (2005) Polypropylene handbook

  4. Maddah HA (2016) Polypropylene as a promising plastic: A review. Am J Polym Sci 6:1–11

    CAS  Google Scholar 

  5. Gahleitner M, Tranninger C, Doshev P (2013) Heterophasic copolymers of polypropylene: Development, design principles, and future challenges. J Appl Polym Sci 130:3028–3037

    Article  CAS  Google Scholar 

  6. Mei G, Beccarini E, Caputo T et al (2009) Recent technical advances in polypropylene. J Plast Film Sheeting 25:95–113

    Article  CAS  Google Scholar 

  7. Liang JZ, Li RKY (2000) Rubber toughening in polypropylene: A review. J Appl Polym Sci 77:409–417

    Article  CAS  Google Scholar 

  8. Jansz J (1999) Polypropylene in automotive applications. In: Polypropylene. Springer, pp 643–651

  9. Moritomi S, Watanabe T, Kanzaki S (2010) Polypropylene compounds for automotive applications. Sumitomo Kagaku 1:1–16

    Google Scholar 

  10. Hejazi I, Sharif F, Garmabi H (2011) Effect of material and processing parameters on mechanical properties of polypropylene/ethylene–propylene–diene–monomer/clay nanocomposites. Mater Des 32:3803–3809

    Article  CAS  Google Scholar 

  11. Pigatto C, Santos Almeida JH, Luiz Ornaghi H et al (2012) Study of polypropylene/ethylene-propylene-diene monomer blends reinforced with sisal fibers. Polym Compos 33:2262–2270

    Article  CAS  Google Scholar 

  12. Kotter I, Grellmann W, Koch T, Seidler S (2006) Morphology–toughness correlation of polypropylene/ethylene–propylene rubber blends. J Appl Polym Sci 100:3364–3371

    Article  CAS  Google Scholar 

  13. Wei G, Sue H (2000) Fracture behavior of styrene-ethylene-propylene rubber-toughened polypropylene. Polym Eng Sci 40:1979–1988

    Article  CAS  Google Scholar 

  14. Matsuda Y, Hara M, Mano T et al (2005) The effect of the volume fraction of dispersed phase on toughness of injection molded polypropylene blended with SEBS, SEPS, and SEP. Polym Eng Sci 45:1630–1638

    Article  CAS  Google Scholar 

  15. Lendvai L (2021) A novel preparation method of polypropylene/natural rubber blends with improved toughness. Polym Int 70:298–307

    Article  CAS  Google Scholar 

  16. Joseph A, George S, Joseph K, Thomas S (2006) Melting and crystallization behaviors of isotactic polypropylene/acrylonitrile–butadiene rubber blends in the presence and absence of compatibilizers and fillers. J Appl Polym Sci 102:2067–2080

    Article  CAS  Google Scholar 

  17. Ragunathan S, Ismail H, Hussin K (2014) Comparison of processing and mechanical properties of polypropylene/recycled acrylonitrile butadiene rubber/rice husk powder composites modified with silane and acetic anhydride compound. J Thermoplast Compos Mater 27:1651–1666

    Article  Google Scholar 

  18. Yasin T, Ahmed S, Yoshii F, Makuuchi K (2002) Radiation vulcanization of acrylonitrile–butadiene rubber with polyfunctional monomers. React Funct Polym 53:173–181. https://doi.org/10.1016/S1381-5148(02)00171-2

    Article  CAS  Google Scholar 

  19. Liu J, Li X, Xu L, Zhang P (2016) Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment. Polym Test 54:59–66. https://doi.org/10.1016/j.polymertesting.2016.06.010

    Article  CAS  Google Scholar 

  20. George E, Joy J, Anas S (2021) Acrylonitrile-based polymer/graphene nanocomposites: A review. Polym Compos 42:4961–4980. https://doi.org/10.1002/pc.26224

    Article  CAS  Google Scholar 

  21. Li X, Nie W, Xu Y et al (2020) Functionalized GO/polysulfide rubber composites with excellent comprehensive properties based interfacial optimum design. Compos Part B Eng 198:108234. https://doi.org/10.1016/j.compositesb.2020.108234

    Article  CAS  Google Scholar 

  22. Thomas B, Maria HJ, George G et al (2019) A novel green approach for the preparation of high performance nitrile butadiene rubber-pristine graphene nanocomposites. Compos Part B Eng 175:107174. https://doi.org/10.1016/j.compositesb.2019.107174

    Article  CAS  Google Scholar 

  23. Rai S (2021) NBR/PVC Blends Production, Testing and Applications: An Overview. Int J Chem Synth Chem React 7:22–25

    Google Scholar 

  24. Varghese PJG, David DA, Karuth A et al (2022) Experimental and Simulation Studies on Nonwoven Polypropylene-Nitrile Rubber Blend: Recycling of Medical Face Masks to an Engineering Product. ACS Omega 7:4791–4803. https://doi.org/10.1021/acsomega.1c04913

    Article  CAS  Google Scholar 

  25. Tariq A, Ahmad NM, Abbas MA et al (2021) Reactive Extrusion of Maleic-Anhydride-Grafted Polypropylene by Torque Rheometer and Its Application as Compatibilizer. Polymers (Basel) 13:495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baouz T, Rezgui F, Yilmazer U (2013) Ethylene-methyl acrylate-glycidyl methacrylate toughened poly (lactic acid) nanocomposites. J Appl Polym Sci 128:3193–3204

    Article  CAS  Google Scholar 

  27. Karger-Kocsis J (2012) Polypropylene structure, blends and composites: Volume 3 composites. Springer Science & Business Media

  28. Pukánszky B, Tüdős F, Kolařik J, Lednický F (1990) Ternary composites of polypropylene, elastomer, and filler: analysis of phase structure formation. Polym Compos 11:98–104

    Article  Google Scholar 

  29. Uotila R, Hippi U, Paavola S, Seppälä J (2005) Compatibilization of PP/elastomer/microsilica composites with functionalized polyolefins: Effect on microstructure and mechanical properties. Polymer (Guildf) 46:7923–7930

    Article  CAS  Google Scholar 

  30. Ruan WH, Huang XB, Wang XH et al (2006) Effect of Drawing Induced Dispersion of Nano-Silica on Performance Improvement of Poly (propylene)-Based Nanocomposites. Macromol Rapid Commun 27:581–585

    Article  CAS  Google Scholar 

  31. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62:1327–1340

    Article  CAS  Google Scholar 

  32. Hemath M, Mavinkere Rangappa S, Kushvaha V et al (2020) A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym Compos 41:3940–3965

    Article  CAS  Google Scholar 

  33. Kuan HTN, Tan MY, Shen Y, Yahya MY (2021) Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review. Compos Adv Mater 30:26349833211007504

    Google Scholar 

  34. Trivedi DN, Rachchh NV (2021) Graphene and its application in thermoplastic polymers as nano-filler-A review. Polymer (Guildf) 124486

  35. Abouzeid RE, Owda ME, Dacrory S (2022) Effective adsorption of cationic methylene blue dye on cellulose nanofiber/graphene oxide/silica nanocomposite: Kinetics and equilibrium. J Appl Polym Sci 139:e52377

    Article  CAS  Google Scholar 

  36. Kumar A, Sharma K, Dixit AR (2019) A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54:5992–6026

    Article  CAS  Google Scholar 

  37. Sun X, Huang C, Wang L et al (2021) Recent Progress in graphene/polymer nanocomposites. Adv Mater 33. https://doi.org/10.1002/adma.202001105

  38. Brodie BC (1859) On the atomic weight of graphite. J Storage 149:249–259

    Google Scholar 

  39. Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Berichte der Dtsch Chem Gesellschaft 31:1481–1487

    Article  CAS  Google Scholar 

  40. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  41. Liu D, Bian Q, Li Y et al (2016) Effect of oxidation degrees of graphene oxide on the structure and properties of poly (vinyl alcohol) composite films. Compos Sci Technol 129:146–152. https://doi.org/10.1016/j.compscitech.2016.04.004

    Article  CAS  Google Scholar 

  42. Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene/polymer nanocomposites. Carbon N Y 98:313–333

    Article  CAS  Google Scholar 

  43. Kuila T, Bose S, Mishra AK et al (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105. https://doi.org/10.1016/j.pmatsci.2012.03.002

    Article  CAS  Google Scholar 

  44. Georgakilas V, Tiwari JN, Kemp KC et al (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519

    Article  CAS  PubMed  Google Scholar 

  45. Lu Z, Hu Y, Zhang T et al (2023) Preparation and anti-migration performance of ethylene propylene diene terpolymer composites modified with GO-SiO2 hybrid nanomaterials. J Appl Polym Sci 140:e53341

    Article  CAS  Google Scholar 

  46. Lu Z, Hu Y, Zhang B et al (2022) Anti-migration performance of EPDM composite improved by octadecylamine-functionalized graphene oxide. J Appl Polym Sci 139:e52713

    Article  CAS  Google Scholar 

  47. Guezzout Z, Doufnoune R, Haddaoui N (2017) Effect of graphene oxide on the properties of compatibilized polypropylene/ethylene-propylene-rubber blend. J Polym Res 24:1–15

    Article  CAS  Google Scholar 

  48. Oromiehie A, Ebadi-Dehaghani H, Mirbagheri S (2014) Chemical modification of polypropylene by maleic anhydride: melt grafting, characterization and mechanism. Int J Chem Eng Appl 5:117

    CAS  Google Scholar 

  49. Ghozali M, Rohmah EN (2017) Synthesis of PP-g-MA as compatibilizer for PP/PLA biocomposites: Thermal, mechanical and biodegradability properties. In: AIP Conference Proceedings. AIP Publishing LLC, p 20044

  50. Sánchez-Valdes S, Zapata-Domínguez AG, Martinez-Colunga JG et al (2018) Influence of functionalized polypropylene on polypropylene/graphene oxide nanocomposite properties. Polym Compos 39:1361–1369

    Article  Google Scholar 

  51. Al-Shemy MT, Al-Sayed A, Dacrory S (2022) Fabrication of sodium alginate/graphene oxide/nanocrystalline cellulose scaffold for methylene blue adsorption: Kinetics and thermodynamics study. Sep Purif Technol 290:120825. https://doi.org/10.1016/j.seppur.2022.120825

    Article  CAS  Google Scholar 

  52. Dacrory S (2022) Development of mesoporous foam based on dicarboxylic cellulose and graphene oxide for potential oil/water separation. Polym Bull 79:9563–9574

    Article  CAS  Google Scholar 

  53. Meza-Arroyo J, Syamala Rao MG, Mejia I et al (2019) Low temperature processing of Al2O3-GPTMS-PMMA hybrid films with applications to high-performance ZnO thin-film transistors. Appl Surf Sci 467–468:456–461. https://doi.org/10.1016/j.apsusc.2018.10.170

    Article  CAS  Google Scholar 

  54. George S, Varughese KT, Thomas S (2000) Thermal and crystallisation behaviour of isotactic polypropylene/nitrile rubber blends. Polymer (Guildf) 41:5485–5503. https://doi.org/10.1016/S0032-3861(99)00719-3

    Article  CAS  Google Scholar 

  55. El Achaby M, Arrakhiz F, Vaudreuil S et al (2012) Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33:733–744

    Article  Google Scholar 

  56. Lu Z, Hu Y, Zhang B et al (2022) EPDM/GO composite insulation for anti-migration of plasticizers. J Polym Res 29:385

    Article  CAS  Google Scholar 

  57. Frounchi M, Dadbin S, Salehpour Z, Noferesti M (2006) Gas barrier properties of PP/EPDM blend nanocomposites. J Memb Sci 282:142–148

    Article  CAS  Google Scholar 

  58. Tian M, Han J, Zou H et al (2012) Dramatic influence of compatibility on crystallization behavior and morphology of polypropylene in NBR/PP thermoplastic vulcanizates. J Polym Res 19:1–13

    Article  Google Scholar 

  59. Miao M, Wei C, Wang Y, Qian Y (2018) Effect of compatibilizer on the interface bonding of graphene oxide/polypropylene composite fibers. Polymers (Basel) 10:1283

    Article  PubMed  PubMed Central  Google Scholar 

  60. Da Silva ALN, Rocha MCG, Coutinho FMB et al (2002) Evaluation of rheological and mechanical behavior of blends based on polypropylene and metallocene elastomers. Polym Test 21:647–652

    Article  Google Scholar 

  61. Md Said NH, Liu W, Khe C et al (2021) Review of the past and recent developments in functionalization of graphene derivatives for reinforcement of polypropylene nanocomposites. Polym Compos 42:1075–1108

    Article  CAS  Google Scholar 

  62. Al-Saleh MA, Yussuf AA, Al-Enezi S et al (2019) Polypropylene/graphene nanocomposites: Effects of GNP loading and compatibilizers on the mechanical and thermal properties. Materials (Basel) 12:3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khan T, Irfan MS, Ali M et al (2021) Insights to low electrical percolation thresholds of carbon-based polypropylene nanocomposites. Carbon N Y 176:602–631. https://doi.org/10.1016/j.carbon.2021.01.158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahir Guezzout.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest /Competing interests regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 456 KB)

Supplementary file2 (PNG 468 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guezzout, Z., Boublia, A. & Haddaoui, N. Enhancing thermal and mechanical properties of polypropylene-nitrile butadiene rubber nanocomposites through graphene oxide functionalization. J Polym Res 30, 207 (2023). https://doi.org/10.1007/s10965-023-03585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03585-x

Keywords

Navigation