Skip to main content

Advertisement

Log in

Vegetable oils based precursors: modifications and scope for futuristic bio-based polymeric materials

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Vegetable oils or fats are one of the most important renewable resources and mainly consist of triglyceride esters with different fatty acid chains. These components contain a number of highly functional sites in the form of unsaturated -C = C- bonds, triglyceride ester groups, and allylic reactive positions. Therefore, they present a possibility for multiple ranges of chemical transformations and also produce new and novel bio-based monomers for the synthesis of polymers with considerable bio-degradability. Vegetable oils and the chemicals derived thereof come from non-exhaustible and renewable resource. They are eco-friendly and emerging as sustainable alternates to the chemicals or monomers derived from limitedly available petroleum source, which are also known for their toxicity and environmental pollution. The present review discusses and analyses the possible application areas and summarise the diverse chemical modifications namely, hydrogenation, trans-esterification, epoxidation, along with various polymerization processes that have been reported in the literature. The case of very less explored non-edible oil derived from Cassia fistula (Indian laburnum), as a futuristic precursor especially in the polymer synthesis has been highlighted. We believe that the commercial potential and opportunities for such sustainable materials in general and bio-degradable polymers or plastics in particular will emerge on the global market in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28

Similar content being viewed by others

Abbreviations

ADMET:

Acyclic diene metathesis

AA:

Acrylic acid

BD:

1, 4-butanediol

CFSO:

Cassia fistula seed oil

DA:

Dimer acid

DBTDL:

Dibutyltin dilaurate

DCC:

Dicyclolhexylcarbodimide

EACO:

Epoxidized acrylated castor oil

ECO:

Epoxidized castor oil

ECFSO:

Epoxidized Cassia fistula seed oil

ELO:

Epoxidized linseed oil

ESO:

Epoxidized soybean oil

FAME:

Fatty acid methyl ester

HMDI:

Hexamthylene diisocyanate

IPDI:

Isophorone diisocyanate

IPN:

Interpenetrating polymer network

IV:

Iodine value

LC:

Liquid crystalline

MDI:

Methylene diisocyanate

MET:

Metathesis

MMA:

Methyl methacrylate

NIPU:

Non-isocyanate polyurethane

PVC:

Poly(vinyl chloride)

PA:

Polyamide

PHA:

Polyhydroxy alkanoate

PHBA:

p-hydroxybenzoic acid

PPG:

Poly(propylene glycol)

PU:

Polyurethane

PUD:

Polyurethane dispersion

ROMP:

Ring opening polymerization method

TDI:

Toluene diisocyanate

Tg :

Glass transition temperature

References

  1. Sharma V, Kundu PP (2006) Addition polymers from natural oils—A review. Prog Polym Sci 31(11):983–1008. https://doi.org/10.1016/j.progpolymsci.2006.09.003

    Article  CAS  Google Scholar 

  2. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  3. Guo B, Glavas L, Albertsson A-C (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 38(9):1263–1286. https://doi.org/10.1016/j.progpolymsci.2013.06.003

    Article  CAS  Google Scholar 

  4. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36(9):1254–1276. https://doi.org/10.1016/j.progpolymsci.2011.05.003

    Article  CAS  Google Scholar 

  5. Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Philos Trans Royal Soc B: Biol Sci 364(1526):1977–1984. https://doi.org/10.1098/rstb.2008.0304

    Article  CAS  Google Scholar 

  6. Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36(11):1788–1802. https://doi.org/10.1039/B703294C

    Article  CAS  PubMed  Google Scholar 

  7. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575. https://doi.org/10.1177/0021998306067321

    Article  CAS  Google Scholar 

  8. Islam MR, Beg MDH, Jamari SS (2014) Development of vegetable-oil-based polymers. J Appl Polym Sci 131(18). https://doi.org/10.1002/app.40787

  9. Andjelkovic D, Li F, Larock R (2006) ACS Symposium Series 921. American Chemical Society, Washington DC

  10. Ronda JC, Lligadas G, Galià M, Cádiz V (2011) Vegetable oils as platform chemicals for polymer synthesis. Eur J Lipid Sci Technol 113(1):46–58. https://doi.org/10.1002/ejlt.201000103

    Article  CAS  Google Scholar 

  11. Belgacem MN, Gandini A (2011) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam

  12. Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41(24):9491–9504. https://doi.org/10.1021/ma801735u

    Article  CAS  Google Scholar 

  13. Williams CK, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48(1):1–10. https://doi.org/10.1080/15583720701834133

    Article  CAS  Google Scholar 

  14. Galià M, de Espinosa LM, Ronda JC, Lligadas G, Cádiz V (2010) Vegetable oil-based thermosetting polymers. Eur J Lipid Sci Technol 112(1):87–96. https://doi.org/10.1002/ejlt.200900096

    Article  CAS  Google Scholar 

  15. Eissen M, Metzger JO, Schmidt E, Schneidewind U (2002) 10 years after Rio—Concepts on the contribution of chemistry to a sustainable development. Angew Chem Int Ed 41(3):414–436. https://doi.org/10.1002/1521-3773(20020201)41:3<414::AID-ANIE414>3.0.CO;2-N

    Article  CAS  Google Scholar 

  16. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092. https://doi.org/10.1021/sc500087z

    Article  CAS  Google Scholar 

  17. Fertier L, Koleilat H, Stemmelen M, Giani O, Joly-Duhamel C, Lapinte V, Robin J-J (2013) The use of renewable feedstock in UV-curable materials – a new age for polymers and green chemistry. Prog Polym Sci 38(6):932–962. https://doi.org/10.1016/j.progpolymsci.2012.12.002

    Article  CAS  Google Scholar 

  18. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

    Article  CAS  Google Scholar 

  19. Sharmin E, Zafar F, Akram D, Alam M, Ahmad S (2015) Recent advances in vegetable oils based environment friendly coatings: a review. Ind Crops Prod 76:215–229. https://doi.org/10.1016/j.indcrop.2015.06.022

    Article  CAS  Google Scholar 

  20. Lou W, Dai Z, Jiang P, Zhang P, Bao Y, Gao X, Xia J, Haryono A (2022) Development of soybean oil-based aqueous polyurethanes and the effect of hydroxyl value on its properties. Polym Adv Technol 33(8):2393–2403. https://doi.org/10.1002/pat.5695

    Article  CAS  Google Scholar 

  21. Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143. https://doi.org/10.1016/j.progpolymsci.2016.12.009

    Article  CAS  Google Scholar 

  22. del Río E, Lligadas G, Ronda JC, Galià M, Cádiz V, Meier MAR (2011) Shape memory polyurethanes from renewable polyols obtained by ATMET polymerization of Glyceryl Triundec-10-enoate and 10-Undecenol. Macromol Chem Phys 212(13):1392–1399. https://doi.org/10.1002/macp.201100025

    Article  CAS  Google Scholar 

  23. Dyer JM, Stymne S, Green AG, Carlsson AS (2008) High-value oils from plants. Plant J 54(4):640–655. https://doi.org/10.1111/j.1365-313X.2008.03430.x

    Article  CAS  PubMed  Google Scholar 

  24. Jadhav HB, Annapure US (2022) Triglycerides of medium-chain fatty acids: a concise review. J Food Sci Technol. https://doi.org/10.1007/s13197-022-05499-w

    Article  PubMed  Google Scholar 

  25. Seniha Güner F, Yağcı Y, Tuncer Erciyes A (2006) Polymers from triglyceride oils. Prog Polym Sci 31(7):633–670. https://doi.org/10.1016/j.progpolymsci.2006.07.001

    Article  CAS  Google Scholar 

  26. Ahmad MU (2017) Fatty acids: Chemistry, synthesis, and applications. Elsevier, Amsterdam

  27. Cui X, Sun N, Cao P, Guo J, Ming P (2022) Preparation and application of sustainable nanofluid lubricant from waste soybean oil and waste serpentine for green intermittent machining process. J Manuf Process 77:508–524. https://doi.org/10.1016/j.jmapro.2022.03.032

    Article  Google Scholar 

  28. Górski K, Smigins R, Matijošius J, Rimkus A, Longwic R (2022) Physicochemical properties of diethyl ether—Sunflower oil blends and their impact on diesel engine emissions. Energies 15(11). https://doi.org/10.3390/en15114133

  29. Edla S, Thampi AD, Prasannakumar P, Rani S (2022) Evaluation of physicochemical, tribological and oxidative stability properties of chemically modified rice bran and karanja oils as viable lubricant base stocks for industrial applications. Tribol Int 173:107631. https://doi.org/10.1016/j.triboint.2022.107631

    Article  CAS  Google Scholar 

  30. Shen R, Long M, Lei C, Dong L, Yu G, Tang J (2022) Anticorrosive waterborne polyurethane coatings derived from castor oil and renewable diols. Chem Eng J 433:134470. https://doi.org/10.1016/j.cej.2021.134470

    Article  CAS  Google Scholar 

  31. Liu R, Li S, Yao N, Xia J, Li M, Ding H, Xu L, Yang X (2022) Castor oil-based polyurethane networks containing diselenide bonds: Self-healing, shape memory, and high flexibility. Prog Org Coat 163:106615. https://doi.org/10.1016/j.porgcoat.2021.106615

    Article  CAS  Google Scholar 

  32. İşeri-Çağlar D, Baştürk E, Oktay B, Kahraman MV (2014) Preparation and evaluation of linseed oil based alkyd paints. Prog Org Coat 77(1):81–86. https://doi.org/10.1016/j.porgcoat.2013.08.005

    Article  CAS  Google Scholar 

  33. Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO (2021) Fatty acids and their derivatives as renewable platform molecules for the Chemical Industry. Angew Chem Int Ed 60(37):20144–20165. https://doi.org/10.1002/anie.202100778

    Article  CAS  Google Scholar 

  34. Osorio-González CS, Gómez-Falcon N, Sandoval-Salas F, Saini R, Brar SK, Ramírez AAJE (2020) Production of biodiesel from castor oil: a review. Energies 13(10):2467

  35. Keera ST, El Sabagh SM, Taman AR (2018) Castor oil biodiesel production and optimization. Egypt J Pet 27(4):979–984. https://doi.org/10.1016/j.ejpe.2018.02.007

    Article  Google Scholar 

  36. Fatimah I, Sagadevan S, Murugan B, Muraza O (2022) Castor Oil (Ricinus communis). In: Biorefinery of oil producing plants for value-added products, pp 51–78. https://doi.org/10.1002/9783527830756.ch4

  37. Rial RC, de Freitas ON, Nazário CED, Viana LH (2020) Biodiesel from soybean oil using porcine pancreas lipase immobilized on a new support: p-nitrobenzyl cellulose xanthate. Renew Energy 149:970–979. https://doi.org/10.1016/j.renene.2019.10.078

    Article  CAS  Google Scholar 

  38. Rajkumari K, Rokhum L (2020) A sustainable protocol for production of biodiesel by transesterification of soybean oil using banana trunk ash as a heterogeneous catalyst. Biomass Convers Biorefinery 10(4):839–848. https://doi.org/10.1007/s13399-020-00647-8

    Article  CAS  Google Scholar 

  39. Gao J, Thelen KD, Min D-H, Smith S, Hao X, Gehl R (2010) Effects of manure and fertilizer applications on canola oil content and fatty acid composition. Agron J 102(2):790–797. https://doi.org/10.2134/agronj2009.0368

    Article  CAS  Google Scholar 

  40. Riaz T, Iqbal MW, Mahmood S, Yasmin I, Leghari AA, Rehman A, Mushtaq A, Ali K, Azam M, Bilal M (2021) Cottonseed oil: a review of extraction techniques, physicochemical, functional, and nutritional properties. Crit Rev Food Sci Nutr 1–19. https://doi.org/10.1080/10408398.2021.1963206

  41. Dixit S, kanakraj S, Rehman A (2012) Linseed oil as a potential resource for bio-diesel: a review. Renew Sustain Energy Rev 16(7):4415–4421. https://doi.org/10.1016/j.rser.2012.04.042

    Article  CAS  Google Scholar 

  42. Maggio RM, Kaufman TS, Carlo MD, Cerretani L, Bendini A, Cichelli A, Compagnone D (2009) Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares. Food Chem 114(4):1549–1554. https://doi.org/10.1016/j.foodchem.2008.11.029

    Article  CAS  Google Scholar 

  43. Barrera-Arellano D, Badan-Ribeiro AP, Serna-Saldivar SO (2019) Chap. 21 - corn oil: composition, Processing, and utilization. In: Serna-Saldivar SO (ed) Corn, 3rd edn. AACC International Press, Oxford, pp 593–613. https://doi.org/10.1016/B978-0-12-811971-6.00021-8

  44. Schönemann A, Frenzel W, Unger A, Kenndler E (2006) An investigation of the fatty acid composition of new and aged Tung Oil. Stud Conserv 51(2):99–110. https://doi.org/10.1179/sic.2006.51.2.99

    Article  Google Scholar 

  45. Huang K, Liu Z, Zhang J, Li S, Li M, Xia J, Zhou Y (2014) Epoxy monomers derived from Tung Oil fatty acids and its regulable thermosets cured in two synergistic Ways. Biomacromolecules 15(3):837–843. https://doi.org/10.1021/bm4018929

    Article  CAS  PubMed  Google Scholar 

  46. Sanghamitra K, Oramas RV, Prasad RN (2014) Comparative yeild and oil quality of toxic and non-toxic Mexican Jatropha curcas grown in the same agroclimatic conditions. Am J Plant Sci 5(2):230–234. https://doi.org/10.4236/ajps.2014.52030

  47. Koushki M, Nahidi M, Cheraghali FJ (2015) Physico-chemical properties, fatty acid profile and nutrition in palm oil. Arch Adv Biosci 6(3):117–134

  48. Chowdhury K, Banu LA, Khan S, Latif A (2008) Studies on the fatty acid composition of Edible Oil. Bangladesh J Sci Ind Res 42(3):311–316. https://doi.org/10.3329/bjsir.v42i3.669

    Article  Google Scholar 

  49. Omari A, Mgani QA, Mubofu EB (2015) Fatty acid profile and physico-chemical parameters of castor oils in Tanzania. J Green Sustain Chem 05(04):10. https://doi.org/10.4236/gsc.2015.54019

  50. Nekhavhambe E, Mukaya HE, Nkazi DB (2019) Development of castor oil–based polymers: a review. J Adv Manuf Process 1(4):e10030. https://doi.org/10.1002/amp2.10030

    Article  CAS  Google Scholar 

  51. Hammond EG, Johnson LA, Su C, Wang T, White PJ (2005) Soybean oil. In: Bailey’s industrial oil and fat products. https://doi.org/10.1002/047167849X.bio041

  52. Perkins EG (1995) Chap. 3 - physical Properties of soybeans and soybean products. In: Erickson DR (ed) Practical handbook of soybean Processing and utilization. AOCS Press, pp 29–38. https://doi.org/10.1016/B978-0-935315-63-9.50007-3

  53. Tan C-P, Nehdi IA (2012) 13 - the Physicochemical properties of palm oil and its components. In: Lai O-M, Tan C-P, Akoh CC (eds) Palm Oil. AOCS Press, pp 377–391. https://doi.org/10.1016/B978-0-9818936-9-3.50016-2

  54. Guinda Á, Dobarganes MC, Ruiz-Mendez MV, Mancha M (2003) Chemical and physical properties of a sunflower oil with high levels of oleic and palmitic acids. Eur J Lipid Sci Technol 105(3–4):130–137. https://doi.org/10.1002/ejlt.200390028

    Article  CAS  Google Scholar 

  55. Selvi K, Pınar Y, Yeşiloğlu E (2006) Some physical properties of linseed. Biosyst Eng 95(4):607–612. https://doi.org/10.1016/j.biosystemseng.2006.08.008

    Article  Google Scholar 

  56. Nayak BS, Patel KJSM (2010) Physicochemical characterization of seed and seed oil of Jatropha curcas L. collected from Bardoli (South Gujarat). Sains Malaysiana 39(6):951–955

  57. Suzuki T, Sumimoto K, Fukada K, Katayama T (2021) Iodine value of tung biodiesel fuel using Wijs method is significantly lower than calculated value. J Wood Sci 67(1):55. https://doi.org/10.1186/s10086-021-01987-3

    Article  CAS  Google Scholar 

  58. Ramanujam S, Zequine C, Bhoyate S, Neria B, Kahol PK, Gupta RK (2019) Novel biobased polyol using corn oil for highly flame-retardant polyurethane foams. C 5 (1). https://doi.org/10.3390/c5010013

  59. Abdelmalik AA, Fothergill JC, Dodd SJ, Abbott AP, Harris RC (2011) Effect of side chains on the dielectric properties of alkyl esters derived from palm kernel oil. In: 2011 IEEE International Conference on Dielectric Liquids, 26–30 June 2011, pp 1–4. https://doi.org/10.1109/ICDL.2011.6015413

  60. Parimala Chelvi Ratnamani M, Zhang X, Wang H (2022) A comprehensive assessment on the pivotal role of hydrogels in scaffold-based bioprinting. Gels 8(4). https://doi.org/10.3390/gels8040239

  61. Kaikade DS, Sabnis AS (2022) Polyurethane foams from vegetable oil-based polyols: a review. Polym Bull. https://doi.org/10.1007/s00289-022-04155-9

    Article  Google Scholar 

  62. Wu K, Gui T, Dong J, Luo J, Liu R (2022) Synthesis of robust polyaniline microcapsules via UV-initiated emulsion polymerization for self-healing and anti-corrosion coating. Prog Org Coat 162:106592. https://doi.org/10.1016/j.porgcoat.2021.106592

    Article  CAS  Google Scholar 

  63. Ramezanpour J, Ataei S, Khorasani SN (2022) Development of smart epoxy coating through click reaction using a vegetable oil. Prog Org Coat 170:106985. https://doi.org/10.1016/j.porgcoat.2022.106985

    Article  CAS  Google Scholar 

  64. Basha GA, Harish D, Saranya R, Chandrasatheesh C, Jayapriya J (2022) Biolubricants derived from poultry waste oil and its methyl esters by epoxidation and epoxide ring-opening—a comparative study. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02771-z

    Article  Google Scholar 

  65. Dominguez-Candela I, Gomez-Caturla J, Cardona SC, Lora-García J, Fombuena V (2022) Novel compatibilizers and plasticizers developed from epoxidized and maleinized chia oil in composites based on PLA and chia seed flour. Eur Polymer J 173:111289. https://doi.org/10.1016/j.eurpolymj.2022.111289

    Article  CAS  Google Scholar 

  66. Grinberg S, Kolot V, Mills D (1994) New chemical derivatives based on Vernonia galamensis oil. Ind Crops Prod 3(1):113–119. https://doi.org/10.1016/0926-6690(94)90084-1

    Article  CAS  Google Scholar 

  67. Sun Y, Liu B, Xue J, Wang X, Cui H, Li R, Jia X (2022) Critical metabolic pathways and genes cooperate for epoxy fatty acid-enriched oil production in developing seeds of Vernonia galamensis, an industrial oleaginous plant. Biotechnol Biofuels Bioprod 15(1):21. https://doi.org/10.1186/s13068-022-02120-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yufeng M, Rui W, Qiaoguang L, Mei L, Chengguo L, Puyou J Castor oil as a platform for preparing bio-based chemicals and polymer materials: 1–11. https://doi.org/10.1680/jgrma.20.00085

  69. Rios ÍC, Cordeiro JP, Arruda TBMG, Rodrigues FEA, Uchoa AFJ, Luna FMT, Cavalcante CL, Ricardo NMPS (2020) Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: an alternative for Brazil’s green market. Ind Crops Prod 145:112000. https://doi.org/10.1016/j.indcrop.2019.112000

    Article  CAS  Google Scholar 

  70. Ibrahim NA, Zaini MAA (2018) Microwave-assisted solvent extraction of castor oil from castor seeds. Chin J Chem Eng 26(12):2516–2522. https://doi.org/10.1016/j.cjche.2018.07.009

    Article  CAS  Google Scholar 

  71. Herculano LS, Lukasievicz GVB, Sehn E, Torquato AS, Belançon MP, Savi E, Kimura NM, Malacarne LC, Baesso ML, Astrath NGC (2021) The correlation of physicochemical properties of edible vegetable oils by chemometric analysis of spectroscopic data. Spectrochim Acta Part A Mol Biomol Spectrosc 245:118877. https://doi.org/10.1016/j.saa.2020.118877

    Article  CAS  Google Scholar 

  72. Rajput CV, Mukherjee RB, Sastry NV, Chikhaliya NP (2022) Extraction, characterization and epoxidation of Cassia fistula (Indian laburnum) seed oil: a bio-based material. Ind Crops Prod 187:115496. https://doi.org/10.1016/j.indcrop.2022.115496

    Article  CAS  Google Scholar 

  73. Goldson Barnaby A, Reid R, Rattray V, Williams R, Denny M (2016) Characterization of Jamaican Delonix regia and Cassia fistula seed extracts. Biochem Res Int 2016:3850102. https://doi.org/10.1155/2016/3850102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. John Abraham AP, Chindhanaiselvam A, Subramanian N, Mahendradas D (2017) Biodiesel from Indian laburnum (Cassia fistula) kernal oil. Energy Sour Part A Recover Utilization Environ Eff 39(16):1823–1830. https://doi.org/10.1080/15567036.2017.1384867

    Article  CAS  Google Scholar 

  75. Duraipandiyan V, Ignacimuthu S (2007) Antibacterial and antifungal activity of Cassia fistula L.: an ethnomedicinal plant. J Ethnopharmacol 112(3):590–594. https://doi.org/10.1016/j.jep.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  76. Danish M, Singh P, Mishra G, Srivastava S, Jha KK, Khosa RL (2011) Cassia fistula Linn.(Amulthus)-An important medicinal plant: A review of its traditional uses, phytochemistry and pharmacological properties. J Nat Prod Plant Resour 1(1):101–118

  77. Pawar AV, Killedar SG (2017) Uses of Cassia fistula Linn as a medicinal plant. Int J Adv Res 2(3)

  78. Mwangi RW, Macharia JM, Wagara IN, Bence RL (2021) The medicinal properties of Cassia fistula L: a review. Biomed Pharmacother 144:112240. https://doi.org/10.1016/j.biopha.2021.112240

    Article  CAS  PubMed  Google Scholar 

  79. Panda SK, Padhi LP, Mohanty G (2011) Antibacterial activities and phytochemical analysis of Cassia fistula (Linn.) leaf. J Adv Pharm Technol Res 2(1):62

  80. Kainsa S, Kumar P, Rani P (2012) Pharmacological potentials of Cassia auriculata and Cassia fistula plants: a review. Pak J Biol Sci 15(9):408–417. https://doi.org/10.3923/pjbs.2012.408.417

    Article  PubMed  Google Scholar 

  81. Neelam C, Ranjan B, Komal S, Nootan C (2011) Review on Cassia fistula. Int J Res Ayurveda Pharm 2(2):426–430

  82. Adebayo OT, Fagbenro OA, Jegede T (2004) Evaluation of Cassia fistula meal as a replacement for soybean meal in practical diets of Oreochromis niloticus fingerlings. Aquacult Nutr 10(2):99–104. https://doi.org/10.1111/j.1365-2095.2003.00286.x

    Article  CAS  Google Scholar 

  83. Salimon J, Salih N, Yousif E (2012) Industrial development and applications of plant oils and their biobased oleochemicals. Arab J Chem 5(2):135–145. https://doi.org/10.1016/j.arabjc.2010.08.007

    Article  CAS  Google Scholar 

  84. Mashouf Roudsari G, Mohanty AK, Misra M (2017) Green approaches to engineer tough biobased epoxies: a review. ACS Sustain Chem Eng 5(11):9528–9541. https://doi.org/10.1021/acssuschemeng.7b01422

    Article  CAS  Google Scholar 

  85. Kumar S, Samal SK, Mohanty S, Nayak SK (2018) Recent development of biobased epoxy resins: a review. Polym-Plast Technol Eng 57(3):133–155. https://doi.org/10.1080/03602559.2016.1253742

    Article  CAS  Google Scholar 

  86. Kumar S, Krishnan S, Mohanty S, Nayak SK (2018) Synthesis and characterization of petroleum and biobased epoxy resins: a review. Polym Int 67(7):815–839. https://doi.org/10.1002/pi.5575

    Article  CAS  Google Scholar 

  87. Lligadas G, Ronda JC, Galià M, Cádiz V (2013) Renewable polymeric materials from vegetable oils: a perspective. Mater Today 16(9):337–343. https://doi.org/10.1016/j.mattod.2013.08.016

    Article  CAS  Google Scholar 

  88. Kumar K, Satish S, Sayeed I, Hedge K (2017) Therapeutic uses of Cassia fistula: review. Int J Pharm Chem Res 3(1):38–43

  89. Wang Y, Ma S, Wang L, Tang S, Riley WW, Reaney MJT (2012) Solid superacid catalyzed glycerol esterification of free fatty acids in waste cooking oil for biodiesel production. Eur J Lipid Sci Technol 114(3):315–324. https://doi.org/10.1002/ejlt.201100111

    Article  CAS  Google Scholar 

  90. Hill K (2007) Industrial development and application of biobased oleochemicals. 79(11):1999–2011. https://doi.org/10.1351/pac200779111999

  91. Hill K (2000) Fats and oils as oleochemical raw materials. 72(7):1255–1264. https://doi.org/10.1351/pac200072071255

  92. Karunanithy C, Muthukumarappan K (2011) Rheological characterization of bio-oils from pilot scale microwave assisted pyrolysis. Biofuel’s Engi Proc Tech 293

  93. Subramanian N, Mahendradas DK, Kasirajan R, Sahadevan R (2015) Bio-Oil separation from potential non-edible urban Waste source Putranjiva roxburghii. Sep Sci Technol 50(13):2066–2074. https://doi.org/10.1080/01496395.2015.1018439

    Article  CAS  Google Scholar 

  94. Venkatalaxmi A, Padmavathi BS, Amaranath T (2004) A general solution of unsteady Stokes equations. Fluid Dyn Res 35(3):229–236. https://doi.org/10.1016/j.fluiddyn.2004.06.001

    Article  Google Scholar 

  95. Veldsink JW, Bouma MJ, Schöön NH, Beenackers AACM (1997) Heterogeneous hydrogenation of vegetable oils: a literature review. Catal Rev 39(3):253–318. https://doi.org/10.1080/01614949709353778

    Article  CAS  Google Scholar 

  96. Allen RR (1981) Hydrogenation. J Am Oil Chem Soc 58(3Part1):166–169. https://doi.org/10.1007/BF02582329

    Article  CAS  Google Scholar 

  97. Dijkstra AJ (2012) Kinetics and mechanism of the hydrogenation process – the state of the art. Eur J Lipid Sci Technol 114(9):985–998. https://doi.org/10.1002/ejlt.201100405

    Article  CAS  Google Scholar 

  98. Esmaeili J, Rahimpour F (2017) Regeneration of spent nickel catalyst from hydrogenation process of edible oils: heat treatment with hydrogen injection. Int J Hydrog Energy 42(38):24197–24204. https://doi.org/10.1016/j.ijhydene.2017.07.171

    Article  CAS  Google Scholar 

  99. Krstić J, Gabrovska M, Lončarević D, Nikolova D, Radonjić V, Vukelić N, Jovanović DM (2015) Influence of Ni/SiO2 activity on the reaction pathway in sunflower oil hydrogenation. Chem Eng Res Des 100:72–80. https://doi.org/10.1016/j.cherd.2015.05.001

    Article  CAS  Google Scholar 

  100. de Schneider CS, Lara R, Ceolin LRS, Kaercher MM, Schneider JA (2013) Environmental impact of castor oil catalytic transfer hydrogenation. Clean Technol Environ Policy 15(6):977–985. https://doi.org/10.1007/s10098-012-0567-1

    Article  CAS  Google Scholar 

  101. Dhanuskar S, Naik SN, Pant KK (2021) Castor oil-based derivatives as a raw material for the chemical industry. In: Pant KK, Gupta SK, Ahmad E (eds) Catalysis for clean energy and environmental sustainability: biomass conversion and green chemistry, vol 1. Springer International Publishing, Cham, pp 209–235. https://doi.org/10.1007/978-3-030-65017-9_8

  102. Alwaseem H, Donahue CJ, Marincean S (2014) Catalytic transfer hydrogenation of Castor Oil. J Chem Educ 91(4):575–578. https://doi.org/10.1021/ed300476u

    Article  CAS  Google Scholar 

  103. Sancheti SV, Gogate PR (2017) Ultrasound assisted selective catalytic transfer hydrogenation of soybean oil using 5% Pd/C as catalyst under ambient conditions in water. Ultrason Sonochem 38:161–167. https://doi.org/10.1016/j.ultsonch.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  104. Thakur S, Gogate PR (2020) Synthesis of Pd/C catalyst using formaldehyde reduction method and application for ultrasound assisted transfer hydrogenation of corn oil. Chem Eng Process - Process Intensif 152:107939. https://doi.org/10.1016/j.cep.2020.107939

    Article  CAS  Google Scholar 

  105. Naglič M, Šmidovnik A, Koloini T (1998) Kinetics of catalytic transfer hydrogenation of some vegetable oils. J Am Oil Chem Soc 75(5):629–633. https://doi.org/10.1007/s11746-998-0076-x

    Article  Google Scholar 

  106. Wright HJ, Segur JB, Clark HV, Coburn SK, Langdon EE, DuPuis RN (1944) A report on ester interchange. Oil and Soap 21(5):145–148. https://doi.org/10.1007/BF02549470

    Article  CAS  Google Scholar 

  107. Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9:199–210

  108. Ramezani K, Rowshanzamir S, Eikani MH (2010) Castor oil transesterification reaction: a kinetic study and optimization of parameters. Energy 35(10):4142–4148. https://doi.org/10.1016/j.energy.2010.06.034

    Article  CAS  Google Scholar 

  109. Elango RK, Sathiasivan K, Muthukumaran C, Thangavelu V, Rajesh M, Tamilarasan K (2019) Transesterification of castor oil for biodiesel production: process optimization and characterization. Microchem J 145:1162–1168. https://doi.org/10.1016/j.microc.2018.12.039

    Article  CAS  Google Scholar 

  110. Navas MB, Lick ID, Bolla PA, Casella ML, Ruggera JF (2018) Transesterification of soybean and castor oil with methanol and butanol using heterogeneous basic catalysts to obtain biodiesel. Chem Eng Sci 187:444–454. https://doi.org/10.1016/j.ces.2018.04.068

    Article  CAS  Google Scholar 

  111. Rashid U, Ibrahim M, Yasin S, Yunus R, Taufiq-Yap YH, Knothe G (2013) Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non-food feedstock. Ind Crops Prod 45:355–359. https://doi.org/10.1016/j.indcrop.2012.12.039

    Article  CAS  Google Scholar 

  112. Khiratkar AG, Balinge KR, Patle DS, Krishnamurthy M, Cheralathan KK, Bhagat PR (2018) Transesterification of castor oil using benzimidazolium based Brønsted acid ionic liquid catalyst. Fuel 231:458–467. https://doi.org/10.1016/j.fuel.2018.05.127

    Article  CAS  Google Scholar 

  113. Sharma V, Kundu PP (2008) Condensation polymers from natural oils. Prog Polym Sci 33(12):1199–1215. https://doi.org/10.1016/j.progpolymsci.2008.07.004

    Article  CAS  Google Scholar 

  114. Lodge TP, Hiemenz PC (2020) Polymer chemistry. CRC Press, Boca Raton

  115. Douka A, Vouyiouka S, Papaspyridi L-M, Papaspyrides CD (2018) A review on enzymatic polymerization to produce polycondensation polymers: the case of aliphatic polyesters, polyamides and polyesteramides. Prog Polym Sci 79:1–25. https://doi.org/10.1016/j.progpolymsci.2017.10.001

    Article  CAS  Google Scholar 

  116. Jiang Y, Loos K (2016) Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8(7). https://doi.org/10.3390/polym8070243

  117. Yokozawa T, Ohta Y (2016) Transformation of step-growth polymerization into living chain-growth polymerization. Chem Rev 116(4):1950–1968. https://doi.org/10.1021/acs.chemrev.5b00393

    Article  CAS  PubMed  Google Scholar 

  118. Yokozawa T, Yokoyama A (2007) Chain-growth polycondensation: the living polymerization process in polycondensation. Prog Polym Sci 32(1):147–172. https://doi.org/10.1016/j.progpolymsci.2006.08.001

    Article  CAS  Google Scholar 

  119. Zhang C, Ding R, Kessler MR (2014) Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes. Macromol Rapid Commun 35(11):1068–1074. https://doi.org/10.1002/marc.201400039

    Article  CAS  PubMed  Google Scholar 

  120. Hablot E, Zheng D, Bouquey M, Avérous L (2008) Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties. Macromol Mater Eng 293(11):922–929. https://doi.org/10.1002/mame.200800185

    Article  CAS  Google Scholar 

  121. Sharma C, Edatholath SS, Raman Unni A, Umasankar Patro T, Aswal VK, Rath SK, Harikrishnan G (2016) A pre-polyaddition mediation of castor oil for polyurethane formation. J Appl Polym Sci 133(38). https://doi.org/10.1002/app.43964

  122. Kwolek SL, Morgan PW (1964) Preparation of polyamides, polyurethanes, polysulfonamides, and polyesters by low temperature solution polycondensation. J Polym Sci Part A: Gen Papers 2(6):2693–2703. https://doi.org/10.1002/pol.1964.100020619

    Article  Google Scholar 

  123. Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10(4):1692–1704. https://doi.org/10.1016/j.actbio.2013.08.040

    Article  CAS  PubMed  Google Scholar 

  124. Alam M, Akram D, Sharmin E, Zafar F, Ahmad S (2014) Vegetable oil based eco-friendly coating materials: a review article. Arab J Chem 7(4):469–479. https://doi.org/10.1016/j.arabjc.2013.12.023

    Article  CAS  Google Scholar 

  125. Paraskar PM, Prabhudesai MS, Hatkar VM, Kulkarni RD (2021) Vegetable oil based polyurethane coatings – A sustainable approach: a review. Prog Org Coat 156:106267. https://doi.org/10.1016/j.porgcoat.2021.106267

    Article  CAS  Google Scholar 

  126. Habib F, Bajpai M (2011) Synthesis and characterization of acrylated epoxidized soybean oil for UV cured coatings. Chem Chem Technol 5(3). https://doi.org/10.23939/chcht05.03.317

  127. Hess PS, O’Hare GA (1950) Oxidation of linseed oil. Ind Eng Chem 42(7):1424–1431. https://doi.org/10.1021/ie50487a044

    Article  CAS  Google Scholar 

  128. Soucek MD, Khattab T, Wu J (2012) Review of autoxidation and driers. Prog Org Coat 73(4):435–454. https://doi.org/10.1016/j.porgcoat.2011.08.021

    Article  CAS  Google Scholar 

  129. Yildiz G, Wehling RL, Cuppett SL (2001) Method for determining oxidation of vegetable oils by near-infrared spectroscopy. J Am Oil Chem Soc 78(5):495–502. https://doi.org/10.1007/s11746-001-0292-1

    Article  CAS  Google Scholar 

  130. Aziz MMA, Rahman MT, Hainin MR, Bakar WAWA (2015) An overview on alternative binders for flexible pavement. Constr Build Mater 84:315–319. https://doi.org/10.1016/j.conbuildmat.2015.03.068

    Article  Google Scholar 

  131. Shahidi F (2005) Bailey’s industrial oil and fat products, industrial and nonedible products from oils and fats, vol 6. Wiley, Hoboken

  132. Güler ÖK, Güner FS, Erciyes AT (2004) Some empirical equations for oxypolymerization of linseed oil. Prog Org Coat 51(4):365–371. https://doi.org/10.1016/j.porgcoat.2004.07.024

    Article  CAS  Google Scholar 

  133. Mercangöz M, Küsefoğlu S, Akman U, Hortaçsu Ö (2004) Polymerization of soybean oil via permanganate oxidation with sub/supercritical CO2. Chem Eng Process 43(8):1015–1027. https://doi.org/10.1016/j.cep.2003.10.002

    Article  CAS  Google Scholar 

  134. Tan SG, Chow WS (2010) Biobased epoxidized vegetable oils and its greener epoxy blends: a review. Polym-Plast Technol Eng 49(15):1581–1590. https://doi.org/10.1080/03602559.2010.512338

    Article  CAS  Google Scholar 

  135. Uyama H, Kuwabara M, Tsujimoto T, Kobayashi S (2003) Enzymatic synthesis and curing of biodegradable epoxide-containing polyesters from renewable resources. Biomacromolecules 4(2):211–215. https://doi.org/10.1021/bm0256092

    Article  CAS  PubMed  Google Scholar 

  136. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502. https://doi.org/10.1021/cr050989d

    Article  CAS  PubMed  Google Scholar 

  137. Danov SM, Kazantsev OA, Esipovich AL, Belousov AS, Rogozhin AE, Kanakov EA (2017) Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective. Catal Sci Technol 7(17):3659–3675. https://doi.org/10.1039/C7CY00988G

    Article  CAS  Google Scholar 

  138. Kurańska M, Beneš H, Prociak A, Trhlíková O, Walterová Z, Stochlińska W (2019) Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts. J Clean Prod 236:117615. https://doi.org/10.1016/j.jclepro.2019.117615

    Article  CAS  Google Scholar 

  139. Petrović ZS, Zlatanić A, Lava CC, Sinadinović-Fišer S (2002) Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids — kinetics and side reactions. Eur J Lipid Sci Technol 104(5):293–299. https://doi.org/10.1002/1438-9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-W

    Article  Google Scholar 

  140. Richardson S, Trapet A, Brouwers T (2016) How to effectively manage and reduce emissions in sulfuric acid plants using state-of-the-art MECS® catalysts. Procedia Eng 138:199–205. https://doi.org/10.1016/j.proeng.2016.02.077

    Article  CAS  Google Scholar 

  141. Chen J, Zhou J, Liu W, Bi Y, Peng D (2017) Enzymatic epoxidation of soybean oil in the presence of perbutyric acid. Chem Pap 71(11):2139–2144. https://doi.org/10.1007/s11696-017-0206-8

    Article  CAS  Google Scholar 

  142. Orellana-Coca C, Törnvall U, Adlercreutz D, Mattiasson B, Hatti-Kaul R (2005) Chemo-enzymatic epoxidation of oleic acid and methyl oleate in solvent-free medium. Biocatalysis Biotransformation 23(6):431–437

  143. Sun S, Ke X, Cui L, Yang G, Bi Y, Song F, Xu X (2011) Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology. Ind Crops Prod 33(3):676–682. https://doi.org/10.1016/j.indcrop.2011.01.002

    Article  CAS  Google Scholar 

  144. Farias M, Martinelli M, Bottega DP (2010) Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex. Appl Catal A 384(1):213–219. https://doi.org/10.1016/j.apcata.2010.06.038

    Article  CAS  Google Scholar 

  145. Farias M, Martinelli M, Rolim GK (2011) Immobilized molybdenum acetylacetonate complex on montmorillonite K-10 as catalyst for epoxidation of vegetable oils. Appl Catal A 403(1):119–127. https://doi.org/10.1016/j.apcata.2011.06.021

    Article  CAS  Google Scholar 

  146. Lopez Tellez G, Vigueras-Santiago E, Hernandez-Lopez S, Bilyeu B (2008) Synthesis and thermal cross-linking study of partially-aminated epoxidized linseed oil. Designed Monomers Polym 11(5):435–445

  147. Rüsch gen, Klaas M, Warwel S (1999) Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis1Based partly on a lecture at the International Conference of the Association for the Advancement of Industrial Crops, Saltillo, Mexico, September 14–18, 19971. Industrial Crops and Products 9 (2):125–132. https://doi.org/10.1016/S0926-6690(98)00023-5

  148. Schmitz WR, Wallace JG (1954) Epoxidation of methyl oleate with hydrogen peroxide. J Am Oil Chem Soc 31(9):363–365. https://doi.org/10.1007/BF02545510

    Article  CAS  Google Scholar 

  149. La Scala J, Wool RP (2002) Effect of FA composition on epoxidation kinetics of TAG. J Am Oil Chem Soc 79(4):373–378. https://doi.org/10.1007/s11746-002-0491-9

    Article  Google Scholar 

  150. Rajput CV, Mukherjee RB, Sastry NV, Chikhaliya NP (2022) Epoxidized cassia fistula seed oil as bio-based plasticizer for poly(vinyl chloride) soft films. ACS Appl Polym Mater 4(12):8926–8941. https://doi.org/10.1021/acsapm.2c01333

    Article  CAS  Google Scholar 

  151. Ahmad S, Ashraf SM, Sharmin E, Zafar F, Hasnat A (2002) Studies on ambient cured polyurethane modified epoxy coatings synthesized from a sustainable resource. Prog Cryst Growth Charact Mater 45(1):83–88. https://doi.org/10.1016/S0960-8974(02)00031-1

    Article  CAS  Google Scholar 

  152. Samuelsson J, Sundell P-E, Johansson M (2004) Synthesis and polymerization of a radiation curable hyperbranched resin based on epoxy functional fatty acids. Prog Org Coat 50(3):193–198. https://doi.org/10.1016/j.porgcoat.2004.02.005

    Article  CAS  Google Scholar 

  153. Zou K, Soucek MD (2005) UV-curable cycloaliphatic epoxide based on modified linseed oil: synthesis, characterization and kinetics. Macromol Chem Phys 206(9):967–975. https://doi.org/10.1002/macp.200400390

    Article  CAS  Google Scholar 

  154. Baştürk E, İnan T, Güngör A (2013) Flame retardant UV-curable acrylated epoxidized soybean oil based organic–inorganic hybrid coating. Prog Org Coat 76(6):985–992. https://doi.org/10.1016/j.porgcoat.2012.10.007

    Article  CAS  Google Scholar 

  155. Tang J, Zhang J, Lu J, Huang J, Zhang F, Hu Y, Liu C, An R, Miao H, Chen Y, Huang T, Zhou Y (2020) Preparation and properties of plant-oil-based epoxy acrylate-like resins for UV-curable coatings. Polymers 12(9). https://doi.org/10.3390/polym12092165

  156. Noè C, Iannucci L, Malburet S, Graillot A, Sangermano M, Grassini S (2021) New UV-curable anticorrosion coatings from vegetable oils. Macromol Mater Eng 306(6):2100029. https://doi.org/10.1002/mame.202100029

    Article  CAS  Google Scholar 

  157. Chen J, Soucek MD, Simonsick WJ, Celikay RW (2002) Synthesis and photopolymerization of norbornyl epoxidized linseed oil. Polymer 43(20):5379–5389. https://doi.org/10.1016/S0032-3861(02)00404-4

    Article  CAS  Google Scholar 

  158. Singh AP, Gunasekaran G, Suryanarayana C, Baloji Naik R (2015) Fatty acid based waterborne air drying epoxy ester resin for coating applications. Prog Org Coat 87:95–105. https://doi.org/10.1016/j.porgcoat.2015.05.012

    Article  CAS  Google Scholar 

  159. Ramesh D, Vasudevan T (2009) Synthesis and physico-chemical evaluation of water-soluble epoxy ester primer coating. Prog Org Coat 66(2):93–98. https://doi.org/10.1016/j.porgcoat.2009.06.007

    Article  CAS  Google Scholar 

  160. Esen H, Çayli G (2016) Epoxidation and polymerization of acrylated castor oil. Eur J Lipid Sci Technol 118(6):959–966. https://doi.org/10.1002/ejlt.201500132

    Article  CAS  Google Scholar 

  161. Paluvai NR, Mohanty S, Nayak SK (2015) Fabrication and evaluation of acrylated epoxidized castor oil-toughened diglycidyl ether of bisphenol A nanocomposites. Can J Chem Eng 93(12):2107–2116. https://doi.org/10.1002/cjce.22320

    Article  CAS  Google Scholar 

  162. Thakur S, Karak N (2013) Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Prog Org Coat 76(1):157–164. https://doi.org/10.1016/j.porgcoat.2012.09.001

    Article  CAS  Google Scholar 

  163. Liang H, Liu L, Lu J, Chen M, Zhang C (2018) Castor oil-based cationic waterborne polyurethane dispersions: Storage stability, thermo-physical properties and antibacterial properties. Ind Crops Prod 117:169–178. https://doi.org/10.1016/j.indcrop.2018.02.084

    Article  CAS  Google Scholar 

  164. Furtwengler P, Avérous L (2018) Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem 9(32):4258–4287. https://doi.org/10.1039/C8PY00827B

    Article  CAS  Google Scholar 

  165. Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked Isocyanate, and non-isocyanate polyurethane. Chem Rev 113(1):80–118. https://doi.org/10.1021/cr300195n

    Article  CAS  PubMed  Google Scholar 

  166. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34(10):1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002

    Article  CAS  Google Scholar 

  167. Wang X, Zhang Y, Liang H, Zhou X, Fang C, Zhang C, Luo Y (2019) Synthesis and properties of castor oil-based waterborne polyurethane/sodium alginate composites with tunable properties. Carbohydr Polym 208:391–397. https://doi.org/10.1016/j.carbpol.2018.12.090

    Article  CAS  PubMed  Google Scholar 

  168. Kong X, Yue J, Narine SS (2007) Physical properties of canola oil based polyurethane networks. Biomacromolecules 8(11):3584–3589. https://doi.org/10.1021/bm0704018

    Article  CAS  PubMed  Google Scholar 

  169. Zlatanić A, Petrović ZS, Dušek K (2002) Structure and properties of triolein-based polyurethane networks. Biomacromolecules 3(5):1048–1056. https://doi.org/10.1021/bm020046f

    Article  CAS  PubMed  Google Scholar 

  170. Güner FS, Gümüsel A, Calica S, Erciyes AT (2002) Study of film properties of some urethane oils. J Coatings Technol 74(929):55–59. https://doi.org/10.1007/BF02698369

    Article  Google Scholar 

  171. Lu Y, Larock RC (2010) Soybean oil-based, aqueous cationic polyurethane dispersions: synthesis and properties. Prog Org Coat 69(1):31–37. https://doi.org/10.1016/j.porgcoat.2010.04.024

    Article  CAS  Google Scholar 

  172. Das B, Konwar U, Mandal M, Karak N (2013) Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Ind Crops Prod 44:396–404. https://doi.org/10.1016/j.indcrop.2012.11.028

    Article  CAS  Google Scholar 

  173. Güner FS, Baranak M, Soytaş S, Erciyes AT (2004) Flow behavior of oil-modified polymer solutions. Prog Org Coat 50(3):172–178. https://doi.org/10.1016/j.porgcoat.2003.12.004

    Article  CAS  Google Scholar 

  174. Erciyes AT, Erkal FS, Kabasakal OS (1992) Investigation of urethane oils based on ecballium-elaterium and p-mahaleb seed oils. J Coatings Technol 64(815):61–64

    CAS  Google Scholar 

  175. Ozkaynak MU, Atalay-Oral C, Tantekin-Ersolmaz SB, Güner FS (2005) Polyurethane films for wound dressing applications. Macromol Symp 228(1):177–184. https://doi.org/10.1002/masy.200551016

    Article  CAS  Google Scholar 

  176. Yeganeh H, Mehdizadeh MR (2004) Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol. Eur Polymer J 40(6):1233–1238. https://doi.org/10.1016/j.eurpolymj.2003.12.013

    Article  CAS  Google Scholar 

  177. Hojabri L, Kong X, Narine SS (2009) Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization. Biomacromolecules 10(4):884–891. https://doi.org/10.1021/bm801411w

    Article  CAS  PubMed  Google Scholar 

  178. Narayana Saibaba KV (2021) Applications of waterborne polyurethanes foams. In: Inamuddin, Boddula R, Khan A (eds) Sustainable production and applications of Waterborne Polyurethanes. Springer International Publishing, Cham, pp 143–154. https://doi.org/10.1007/978-3-030-72869-4_9

  179. Gündüz G, Khalid AH, Mecidoğlu İA, Aras L (2004) Water-borne and air-drying oil-based resins. Prog Org Coat 49(3):259–269. https://doi.org/10.1016/j.porgcoat.2003.09.021

    Article  CAS  Google Scholar 

  180. Yeo JK, Sperling LH, Thomas DA (1981) Poly(n-Butyl acrylate)/polystyrene interpenetrating polymer networks and related materials. II. Aspects of molecular mixing via modulus-temperature studies. Polym Eng Sci 21(11):696–702. https://doi.org/10.1002/pen.760211111

    Article  CAS  Google Scholar 

  181. Sperling LH, Manson JA, Qureshi S, Fernandez AM (1981) Tough plastics and reinforced elastomers from renewable resource industrial oils. A short review. Ind Eng Chem Prod Res Dev 20(1):163–166. https://doi.org/10.1021/i300001a023

    Article  CAS  Google Scholar 

  182. Yenwo GM, Manson JA, Pulido J, Sperling LH, Conde A, Devia N (1977) Castor-oil-based interpenetrating polymer networks: synthesis and characterization. J Appl Polym Sci 21(6):1531–1541. https://doi.org/10.1002/app.1977.070210609

    Article  CAS  Google Scholar 

  183. Yenwo GM, Sperling LH, Pulido J, Manson JA, Conde A (1977) Castor oil based interpenetrating polymer networks, IV. Mechanical behavior. Polym Eng Sci 17(4):251–256. https://doi.org/10.1002/pen.760170408

    Article  CAS  Google Scholar 

  184. Kong X, Narine SS (2008) Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate). Biomacromolecules 9(8):2221–2229. https://doi.org/10.1021/bm800335x

    Article  CAS  PubMed  Google Scholar 

  185. Athawale VD, Pillay PS (2002) Interpenetrating polymer networks based on uralkyd–butylmethacrylate. React Funct Polym 50(1):1–8. https://doi.org/10.1016/S1381-5148(01)00084-0

    Article  CAS  Google Scholar 

  186. Raut S, Athawale V (2000) New interpenetrating elastomeric networks based on uralkyd/poly(butyl methacrylate). Eur Polymer J 36(7):1379–1386. https://doi.org/10.1016/S0014-3057(99)00190-1

    Article  CAS  Google Scholar 

  187. Patel VC, Varughese J, Krishnamoorthy PA, Jain RC, Singh AK, Ramamoorty M (2008) Synthesis of alkyd resin from jatropha and rapeseed oils and their applications in electrical insulation. J Appl Polym Sci 107(3):1724–1729. https://doi.org/10.1002/app.27195

    Article  CAS  Google Scholar 

  188. Engel J, Cordellier A, Huang L, Kara S (2019) Enzymatic ring-opening polymerization of lactones: traditional approaches and alternative strategies. ChemCatChem 11(20):4983–4997. https://doi.org/10.1002/cctc.201900976

    Article  CAS  Google Scholar 

  189. Slivniak R, Domb AJ (2005) Lactic acid and ricinoleic acid based copolyesters. Macromolecules 38(13):5545–5553. https://doi.org/10.1021/ma0503918

    Article  CAS  Google Scholar 

  190. Deligny P, Tuck N (2000) Alkyds & polyesters. Wiley, Hoboken

  191. Igwe IO, Ogbobe O (2000) Studies on the properties of polyesters and polyester blends of selected vegetable oils. J Appl Polym Sci 75(12):1441–1446. https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1441::AID-APP1>3.0.CO;2-P

    Article  CAS  Google Scholar 

  192. Khandelwal S, SM K, BB G (1976) Alkyds from orange seed oil. Chem Eng 26(9):15–18

  193. Blayo A, Gandini A, Le Nest J-F (2001) Chemical and rheological characterizations of some vegetable oils derivatives commonly used in printing inks. Ind Crops Prod 14(2):155–167. https://doi.org/10.1016/S0926-6690(01)00079-6

    Article  CAS  Google Scholar 

  194. Uzoh CF, Onukwuli OD, Odera RS, Ofochebe S (2013) Optimization of polyesterification process for production of palm oil modified alkyd resin using response surface methodology. J Environ Chem Eng 1(4):777–785. https://doi.org/10.1016/j.jece.2013.07.021

    Article  CAS  Google Scholar 

  195. Ifijen IH, Odi HD, Maliki M, Omorogbe SO, Aigbodion AI, Ikhuoria EU (2021) Correlative studies on the properties of rubber seed and soybean oil-based alkyd resins and their blends. J Coat Technol Res 18(2):459–467. https://doi.org/10.1007/s11998-020-00416-2

    Article  CAS  Google Scholar 

  196. Sabin P, Benjelloun-Mlayah B, Delmas M (1997) Offset printing inks based on rapeseed and sunflower oil. Part I: synthesis and characterization of rapeseed oil-and sunflower oil-modified alkyd resins. J Am Oil Chem Soc 74(5):481–489. https://doi.org/10.1007/s11746-997-0169-y

    Article  CAS  Google Scholar 

  197. Ifijen IH, Maliki M, Odiachi IJ, Aghedo ON, Ohiocheoya EB (2022) Review on solvents based alkyd resins and water borne alkyd resins: impacts of modification on their coating properties. Chem Afr 5(2):211–225. https://doi.org/10.1007/s42250-022-00318-3

    Article  CAS  Google Scholar 

  198. Holmberg K (2020) High solids alkyd resins. CRC Press, Boca Raton

  199. Mańczyk K, Szewczyk P (2002) Highly branched high solids alkyd resins. Prog Org Coat 44(2):99–109. https://doi.org/10.1016/S0300-9440(01)00249-1

    Article  Google Scholar 

  200. Tiwari S, Tiwari S (2009) Preparation and properties of Mahua oil-based liquid crystalline pentalkyds. J Appl Polym Sci 114(5):2648–2654. https://doi.org/10.1002/app.29785

    Article  CAS  Google Scholar 

  201. Chiang W-Y, Yan C-S (1992) Preparation and properties of liquid crystalline alkyd resin with para-hydroxybenzoic acid mesogenic side chain. J Appl Polym Sci 46(7):1279–1290. https://doi.org/10.1002/app.1992.070460716

    Article  CAS  Google Scholar 

  202. Ashby RD, Foglia TA, Solaiman DKY, Liu C-K, Nuñez A, Eggink G (2000) Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films: effects of epoxidation and curing. Int J Biol Macromol 27(5):355–361. https://doi.org/10.1016/S0141-8130(00)00140-9

    Article  CAS  PubMed  Google Scholar 

  203. Poirier Y (1999) Production of new polymeric compounds in plants. Curr Opin Biotechnol 10(2):181–185. https://doi.org/10.1016/S0958-1669(99)80032-9

    Article  CAS  PubMed  Google Scholar 

  204. Ashby RD, Cromwick A-M, Foglia TA (1998) Radiation crosslinking of a bacterial medium-chain-length poly(hydroxyalkanoate) elastomer from tallow1Mention of brand or firm name does not constitute an endorsement by the US Department of Agriculture over others of a similar nature not mentioned.1. Int J Biol Macromol 23(1):61–72. https://doi.org/10.1016/S0141-8130(98)00034-8

    Article  CAS  PubMed  Google Scholar 

  205. Petrović ZS, Milić J, Xu Y, Cvetković I (2010) A chemical route to high molecular weight vegetable oil-based polyhydroxyalkanoate. Macromolecules 43(9):4120–4125. https://doi.org/10.1021/ma100294r

    Article  CAS  Google Scholar 

  206. Tian L, Li H, Song X, Ma L, Li Z-J (2022) Production of polyhydroxyalkanoates by a novel strain of photobacterium using soybean oil and corn starch. J Environ Chem Eng 10(5):108342. https://doi.org/10.1016/j.jece.2022.108342

    Article  CAS  Google Scholar 

  207. Waller JL, Green PG, Loge FJ (2012) Mixed-culture polyhydroxyalkanoate production from olive oil mill pomace. Bioresour Technol 120:285–289. https://doi.org/10.1016/j.biortech.2012.06.024

    Article  CAS  PubMed  Google Scholar 

  208. Ashby RD, Foglia TA (1998) Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol 49(4):431–437. https://doi.org/10.1007/s002530051194

    Article  CAS  Google Scholar 

  209. van der Walle GAM, Buisman GJH, Weusthuis RA, Eggink G (1999) Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder. Int J Biol Macromol 25(1):123–128. https://doi.org/10.1016/S0141-8130(99)00025-2

    Article  PubMed  Google Scholar 

  210. Casini E, de Rijk TC, de Waard P, Eggink G (1997) Synthesis of poly(hydroxyalkanoate) from hydrolyzed linseed oil. J Environ Polym Degrad 5(3):153–158. https://doi.org/10.1007/BF02763658

    Article  CAS  Google Scholar 

  211. Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146. https://doi.org/10.1016/S0960-8524(02)00212-2

    Article  CAS  PubMed  Google Scholar 

  212. Hablot E, Tisserand A, Bouquey M, Avérous L (2011) Accelerated artificial ageing of new dimer fatty acid-based polyamides. Polym Degrad Stab 96(6):1097–1103. https://doi.org/10.1016/j.polymdegradstab.2011.03.006

    Article  CAS  Google Scholar 

  213. Grishchuk S, Karger-Kocsis J (2012) Modification of vinyl ester and vinyl ester–urethane resin-based bulk molding compounds (BMC) with acrylated epoxidized soybean and linseed oils. J Mater Sci 47(7):3391–3399. https://doi.org/10.1007/s10853-011-6186-0

    Article  CAS  Google Scholar 

  214. Oldring PK, Tuck N (2000) Resins for surface coatings, polyurethanes polyamides phenolplasts aminoplasts maleic resins, vol 3. Wiley, Hoboken

  215. Negrell C, Frénéhard O, Sonnier R, Dumazert L, Briffaud T, Flat J-J (2016) Self-extinguishing bio-based polyamides. Polym Degrad Stab 134:10–18. https://doi.org/10.1016/j.polymdegradstab.2016.09.022

    Article  CAS  Google Scholar 

  216. Mewis J, de Bleyser R (1972) Dynamic behavior of thixotropic systems. J Colloid Interface Sci 40(3):360–369. https://doi.org/10.1016/0021-9797(72)90345-1

    Article  CAS  Google Scholar 

  217. Mewis J (1979) Thixotropy - a general review. J Nonnewton Fluid Mech 6(1):1–20. https://doi.org/10.1016/0377-0257(79)87001-9

    Article  CAS  Google Scholar 

  218. Nayak PL (2000) Natural oil-based polymers: opportunities and challenges. J Macromol Sci Part C 40(1):1–21. https://doi.org/10.1081/MC-100100576

    Article  Google Scholar 

  219. Yamano N, Nakayama A, Kawasaki N, Yamamoto N, Aiba S (2008) Environment t mechanism and characterization of polyamide 4 degradation by Pseudomonas sp. J Polym Environ 16(2):141–146

  220. Zaikov GE, Gumargalieva KZ, Polishchuk AY, Adamyan AA, Vinokurova TI (1999) Polyolefin biodegradation. Int J Polym Mater Polym Biomater 44(1–2):107–133. https://doi.org/10.1080/00914039908012139

    Article  CAS  Google Scholar 

  221. Liu Z, Sharma BK, Erhan SZ (2007) From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. preparation of polymers with lower molecular weight from soybean oil. Biomacromolecules 8(1):233–239. https://doi.org/10.1021/bm060496y

    Article  CAS  PubMed  Google Scholar 

  222. Tian Q, Larock RC (2002) Model studies and the ADMET polymerization of soybean oil. J Am Oil Chem Soc 79(5):479–488. https://doi.org/10.1007/s11746-002-0509-3

    Article  CAS  Google Scholar 

  223. Lu Y, Larock RC (2009) Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications. ChemSusChem 2(2):136–147. https://doi.org/10.1002/cssc.200800241

  224. Salvemini F, Grazzi F, Agostino A, Iannaccone R, Civita F, Hartmann S, Lehmann E, Zoppi M (2013) Non-invasive characterization through X-ray fluorescence and neutron radiography of an ancient japanese lacquer. Archaeol Anthropol Sci 5(3):197–204. https://doi.org/10.1007/s12520-013-0127-6

    Article  Google Scholar 

  225. Kobayashi S, Ikeda R, Oyabu H, Tanaka H, Uyama H (2000) Artificial Urushi: design, synthesis, and enzymatic curing of new urushiol analogues. Chem Lett 29(10):1214–1215

  226. Ikeda R, Tanaka H, Oyabu H, Uyama H, Kobayashi S (2001) Preparation of artificial Urushi via an environmentally benign process. Bull Chem Soc Jpn 74(6):1067–1073

  227. Ikeda R, Tanaka H, Uyama H, Kobayashi S (2002) Synthesis and curing behaviors of a crosslinkable polymer from cashew nut shell liquid. Polymer 43(12):3475–3481. https://doi.org/10.1016/S0032-3861(02)00062-9

    Article  CAS  Google Scholar 

  228. Banks RL, Bailey GC (1964) Olefin disproportionation. A new catalytic process. I&EC Product Research and Development 3(3):170–173. https://doi.org/10.1021/i360011a002

  229. van Dam PB, Mittelmeijer MC, Boelhouwer C (1972) Metathesis of unsaturated fatty acid esters by a homogeneous tungsten hexachloride–tetramethyltin catalyst. J Chem Soc Chem Commun 221221–1222. https://doi.org/10.1039/C39720001221

  230. Erhan SZ, Bagby MO, Nelsen TC (1997) Drying properties of metathesized soybean oil. J Am Oil Chem Soc 74(6):703–706. https://doi.org/10.1007/s11746-997-0204-z

    Article  CAS  Google Scholar 

  231. Nicolaides CP, Opperman JH, Scurrell MS, Focke WW (1990) Metathesis of fatty esters derived from south african sunflower oil. J Am Oil Chem Soc 67(6):362–363. https://doi.org/10.1007/BF02539690

    Article  CAS  Google Scholar 

  232. Refvik MD, Larock RC, Tian Q (1999) Ruthenium-catalyzed metathesis of vegetable oils. J Am Oil Chem Soc 76(1):93–98. https://doi.org/10.1007/s11746-999-0053-z

    Article  CAS  Google Scholar 

  233. Warwel S, Brüse F, Demes C, Kunz M (2004) Polymers and polymer building blocks from meadowfoam oil. Ind Crops Prod 20(3):301–309. https://doi.org/10.1016/j.indcrop.2003.11.002

    Article  CAS  Google Scholar 

  234. Xu J, Liu Z, Erhan SZ, Carriere CJ (2002) A potential biodegradable rubber—viscoelastic properties of a soybean oil-based composite. J Am Oil Chem Soc 79(6):593–596. https://doi.org/10.1007/s11746-002-0528-0

    Article  CAS  Google Scholar 

  235. Husić S, Javni I, Petrović ZS (2005) Thermal and mechanical properties of glass reinforced soy-based polyurethane composites. Compos Sci Technol 65(1):19–25. https://doi.org/10.1016/j.compscitech.2004.05.020

    Article  CAS  Google Scholar 

  236. O’Donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64(9):1135–1145. https://doi.org/10.1016/j.compscitech.2003.09.024

    Article  CAS  Google Scholar 

  237. Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88(2):234–250. https://doi.org/10.1016/j.polymdegradstab.2004.09.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Co-ordinator, UGC-CAS (Phase-II) program, Department of Chemistry, Sardar Patel University for providing the lab facilities. CVR thank the UGC, New Delhi and KCG, Gandhinagar for financial assistance under CPEPA and SHODH programs, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Chetan V. Rajput: conceived the research, wrote the original draft.

Nandhibatla V. Sastry: supervised the research, edited and revised the article.

Navin P. Chikhaliya: supervised the research, edited and reviewed review article.

All authors read and approve the final manuscript.

Corresponding author

Correspondence to Navin P. Chikhaliya.

Ethics declarations

Competing interest

The authors report no declarations of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.08 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, C.V., Sastry, N.V. & Chikhaliya, N.P. Vegetable oils based precursors: modifications and scope for futuristic bio-based polymeric materials. J Polym Res 30, 159 (2023). https://doi.org/10.1007/s10965-023-03534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03534-8

Keywords

Navigation