Skip to main content
Log in

Preparation of high-performance thermosetting films from novel diallyl bisphenol A/furfurylamine type benzoxazine and oligo(phenylene oxide)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The thermoplastic polyphenylene oxide (PPO) with excellent dielectric properties has been applied as matrix resin in telecommunications. However, developing PPO based thermosetting resin with good processing, thermal, and dielectric properties remain challenging. Herein, we propose an interpenetrating polymer network (IPN) structure design for the preparation of benzoxazine/oligo(phenylene oxide) thermosetting resins with good comprehensive properties. A novel 2,2′-diallyl bisphenol A/furfurylamine (D-f) benzoxazine is synthesized and then blended with commercialized PPO oligomer (SA9000) to form a series of IPN prepolymers. Then the novel IPN films are prepared by the programmed temperature rising method with simultaneous polymerization of oxazine ring and diallyl group of benzoxazine and olefinic bond of SA9000. The polymerization temperature of D-f can be lowered significantly by blending with SA9000 via the intermolecular hydrogen bonding. Attributing to good miscibility and strong intermolecular interaction between cross-linked SA9000 and benzoxazine, the D-f/SA9000 IPN films have relatively high glass transition temperatures (198–245 °C). In particular, the D-f/SA9000 IPN films possess the advantages of low dielectric constants (2.530–2.631, 10 GHz) and low-loss grade dielectric losses (0.00615–0.00717, 10 GHz). This work provides a facile and effective strategy for the development of high-performance thermosetting PPO resins based on benzoxazine chemistry and IPN design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data and code availability

Not Applicable.

References

  1. Shukor NAM, Seman N (2020) 5G planar branch line coupler design based on the analysis of dielectric constant, loss tangent and quality factor at high frequency. Sci Rep 10:16115–16130

    Article  Google Scholar 

  2. Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK, Zhang JC (2014) What will 5G be? IEEE J Sel Area Commun 32(6):1065–1082

    Article  Google Scholar 

  3. Volksen W, Miller RD, Dubois G (2010) Low dielectric constant materials. Chem Rev 110(1):56–110

    Article  CAS  PubMed  Google Scholar 

  4. Maier G (2001) Low dielectric constant polymer for microelectronics. Prog Polym Sci 26(1):3–65

    Article  CAS  Google Scholar 

  5. Wang L, Liu C, Shen S, Xu M, Liu X (2020) Low dielectric constant polymers for high speed communication network. Adv Ind Eng Polym Res 3(4):138–148

    Google Scholar 

  6. Zhang L, Mao J, Wang S, Zheng Y, Liu X, Cheng Y (2019) Benzoxazine based high performance materials with low dielectric constant: a review. Curr Org Chem 23(7):809–822

    Article  CAS  Google Scholar 

  7. Huang G, Sun J, Fang Q (2022) Thermo-crosslinkable molecular glasses towards the low k materials at high frequency. Mater Today Chem 24:100782–100791

    Article  CAS  Google Scholar 

  8. Zhou DL, Li JH, Guo QY, Lin X, Zhang Q, Chen F, Han D, Fu Q (2021) Polyhedral oligomeric silsesquioxanes based ultralow-k materials: the effect of cage size. Adv Funct Mater 176:2102074–2102085

    Article  Google Scholar 

  9. Yuan M, Lu X, Zhao Y, Kuo SW, Xin Z (2022) Study of two novel siloxane-containing polybenzoxazines with intrinsic low dielectric constant. Polymer 245:124572–124580

    Article  CAS  Google Scholar 

  10. Qian C, Bei R, Zhu T, Zheng W, Liu S, Chi Z, Aldred MP, Chen X, Zhang Y, Xu J (2019) Facile strategy for intrinsic low-k dielectric polymers: molecular design based on secondary relaxation behavior. Macromolecules 52(12):4601–4609

    Article  CAS  Google Scholar 

  11. Kuo CC, Lin YC, Chen YC, Wu PH, Ueda SAM, Chen WC (2021) Correlating the molecular structure of polyimides with the dielectric constant and dissipation factor at a high frequency of 10 GHz. ACS Appl Polym Mater 3(1):362–371

    Article  CAS  Google Scholar 

  12. Zeng M, Tan D, Feng Z, Chen J, Lu X, Huang YW, Xu QY (2021) Multistructural network design enables polybenzoxazine to achieve low-loss-grade super-high-frequency dielectric properties and high glass transition temperatures. Ind Eng Chem Res 61(1):115–129

    Article  Google Scholar 

  13. Hay AS (1999) Poly(phenylene oxides)s and poly(arylene ether)s derived from 2,6-diarylphenols. Prog Polym Sci 24(1):45–80

    Article  CAS  Google Scholar 

  14. Golla M, Nagendra B, Rizzo P, Daniel C, Ruiz de Ballesteros O, Guerra G (2020) Polymorphism of poly(2,6-dimethyl-1,4-phenylene)oxide in axially stretched films. Macromolecules 53(6):2287–2294

    Article  CAS  Google Scholar 

  15. Reddy KSK, Chen YC, Lin YA, Shih YL, Wang MW, Lin CH (2022) Synthesis of high-Tg, flame-retardant, and low-dissipation telechelic oligo(2,6-dimethylphenylene ether) resins for high-frequency communications. ACS Appl Polym Mater 4(5):3225–3235

    Article  CAS  Google Scholar 

  16. Ingratta M, Elomaa M, Jannasch P (2010) Grafting poly(phenylene oxide) with poly(vinylphosphonic acid) for fuel cell membranes. Polym Chem 1(5):739–746

    Article  CAS  Google Scholar 

  17. Huang Y, Liu W, Jiang Q, Wei Y, Qiu Y (2020) Interlaminar fracture toughness of carbon-fiber-reinforced epoxy composites toughened by poly(phenylene oxide) particles. ACS Appl Polym Mater 2(8):3114–3121

    Article  CAS  Google Scholar 

  18. Fukuhara T, Shibasaki Y, Ando S, Ueda M (2004) Synthesis of thermosetting poly(phenylene ether) containing allyl groups. Polymer 45(3):843–847

    Article  CAS  Google Scholar 

  19. Wang Y, Tao Y, Zhou J, Sun J, Fang Q (2018) Biobased anethole-functionalized poly(phenylene oxides): new low dielectric materials with high Tg and good dimensional stability. ACS Sustain Chem Eng 6(7):9277–9282

    Article  CAS  Google Scholar 

  20. Chen CH, Lee KW, Lin CH, Juang TY (2018) Low-dissipation thermosets derived from oligo(2,6-dimethyl phenylene oxide)-containing benzoxazines. Polymers 10(4):411–425

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen CH, Gu ZC, Tsai YL, Jeng RJ, Lin CH (2018) Identification of the reaction mechanism between phenyl methacrylate and epoxy and its application in preparing low-dielectric epoxy thermosets with flexibility. Polymer 140:225–232

    Article  CAS  Google Scholar 

  22. Ishida H, Froimowicz P (2017) Advanced and emerging polybenzoxazine science and technology. Elsevier, Amsterdam

    Google Scholar 

  23. Ishida H, Agag T (2010) Handbook of benzoxazine resins. Elsevier, Amsterdam

    Google Scholar 

  24. Chen JB, Zeng M, Feng ZJ, Pang T, Huang YW, Xu QY (2011) Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultra-low dielectric losses. ACS Appl Polym Mater 1(4):625–630

    Article  Google Scholar 

  25. Cai W, Wang Z, Shu Z, Liu W, Wang J, Qiu J (2021) Development of a fully bio-based hyperbranched benzoxazine. Polym Chem 12(47):6894–6902

    Article  CAS  Google Scholar 

  26. Zhang K, Han L, Froimowicz P, Ishida H (2017) A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: precursor for low temperature formation of very high performance polybenzoxazine with low dielectric constant and high thermal stability. Macromolecules 50(17):6552–6560

    Article  CAS  Google Scholar 

  27. Zeng M, Zhang LN (2005) Intermolecular interaction and properties of cross-linked materials from poly(ester-urethane) and nitrochitosan. Carbohyd Polym 60(3):399–409

    Article  CAS  Google Scholar 

  28. Zeng M, Zhang LN (2004) Effects of substrate on casting waterborne polyurethane/carboxymethylchitin films. Polymer 45:3535–3545

    Article  CAS  Google Scholar 

  29. Liu J, Wang S, Peng Y, Zhu J, Zhao W, Liu X (2021) Advances in sustainable thermosetting resins: from renewable feedstock to high performance and recyclability. Prog Polym Sci 113:101353–101402

    Article  CAS  Google Scholar 

  30. Lyu Y, Ishida H (2019) Natural-sourced benzoxazine resins, homopolymers, blends and composites: a review of their synthesis, manufacturing and applications. Prog Polym Sci 99:101168–101224

    Article  CAS  Google Scholar 

  31. Zhu HX, Liu Y, Wu YX, Qiu JJ, Liu CM (2020) Unique self-catalyzed bio-benzoxazine derived from novel renewable acid-containing diamines based on levulinic acid and furfurylamine: synthesis, curing behaviors and properties. React Funct Polym 155:104716–104729

    Article  CAS  Google Scholar 

  32. Yan H, Zhan Z, Wang H, Cheng J, Fang Z (2021) Synthesis, curing, and thermal stability of low-temperature-cured benzoxazine resins based on natural renewable resources. ACS Appl Polym Mater 3(7):3392–3401

    Article  CAS  Google Scholar 

  33. Sha XL, Yuan L, Liang G, Gu A (2020) Development and mechanism of high-performance fully biobased shape memory benzoxazine resins with a green strategy. ACS Sustain Chem Eng 8(50):18696–18705

    Article  CAS  Google Scholar 

  34. Mohamed MG, Li CJ, Khan MAR, Liaw CC, Zhang K, Kuo SW (2022) Formaldehyde-free synthesis of fully bio-based multifunctional bisbenzoxazine resins from natural renewable starting materials. Macromolecules 55(8):3106–3115

    Article  CAS  Google Scholar 

  35. Adjaoud A, Puchot L, Verge P (2022) High-Tg and degradable isosorbide-based polybenzoxazine vitrimer. ACS Sustain Chem Eng 10(1):594–602

    Article  CAS  Google Scholar 

  36. Liu Y, Chou C (2005) High performance benzoxazine monomers and polymers containing furan groups. J Polym Sci Part A Polym Chem 43(21):5267–5282

    Article  CAS  Google Scholar 

  37. Shen X, Dai J, Liu Y, Liu X, Zhu J (2017) Synthesis of high performance polybenzoxazine networks from bio-based furfurylamine: furan vs benzene ring. Polymer 122:258–269

    Article  CAS  Google Scholar 

  38. Feng Z, Zeng M, Tan D, Lu X, Shen Y, Xu Q, Meng D (2022) Two photosensitive chalcone-based benzoxazine monomers and their high-performance polymers from renewable sources. J Mater Sci 57:4895–4913

    Article  CAS  Google Scholar 

  39. Feng Z, Zeng M, Meng D, Chen J, Zhu W, Xu Q, Wang J (2020) A novel bio-based benzoxazine resin with outstanding thermal and superhigh-frequency dielectric properties. J Mater Sci-Mater El 31:4363–4376

    Article  Google Scholar 

  40. Zeng M, Zhu W, Feng Z, Chen J, Huang Y, Xu Q, Wang J (2020) Two novel halogen-free, phosphorus-free, and intrinsically flame-retardant benzoxazine thermosets containing electron-withdrawing bridge groups. J Appl Polym Sci 137:49300–49310

    Article  CAS  Google Scholar 

  41. Pang T, Zeng M, Feng Z, Chen J, Huang Y, Xu Q (2019) A facile method for the preparation of furfurylamine based benzoxazine resin with high-frequency low dielectric constants and ultra-low dielectric losses. J Mater Sci-Mater El 30:8358–8370

    Article  CAS  Google Scholar 

  42. Zeng M, Pang T, Chen J, Huang Y, Xu Q, Gu Y (2018) Facile preparation of the novel castor oil-based benzoxazine-urethane copolymer with improved high-frequency dielectric properties. J Mater Sci-Mater El 29:5391–5400

    Article  CAS  Google Scholar 

  43. Yang R, Zhang K (2021) Strategies for improving the performance of diallyl bisphenol A-based benzoxazine resin: chemical modification via acetylene and physical blending with bismaleimide. React Funct Polym 165:104958–104969

    Article  CAS  Google Scholar 

  44. Kumar K, Nair C, Radhakrishnan TS, Ninan KN (2007) Bis allyl benzoxazine: synthesis, polymerisation and polymer properties. Eur Polym J 43(6):2504–2514

    Article  CAS  Google Scholar 

  45. Teng N, Yang SM, Dai JY, Wang SP, Zhao J, Zhu J, Liu XQ (2019) Making benzoxazine greener and stronger: renewable resource, microwave irradiation, green solvent, and excellent thermal properties. ACS Sustain Chem Eng 7(9):8715–8723

    Article  CAS  Google Scholar 

  46. Wang YQ, Kou KC, Li ZY, Wu GL, Zhang Y, Feng AL (2015) Synthesis, characterization, and thermal properties of benzoxazine monomers containing allyl groups. High Perform Polym 28(10):1–11

    Google Scholar 

  47. Lochab B, Monisha M, Amarnath N, Sharma P, Mukherjee S, Ishida H (2021) Review on the accelerated and low-temperature polymerization of benzoxazine resins: addition polymerizable sustainable polymers. Polymers 13(8):1260–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ishida H, Lee YH (2001) Study of hydrogen bonding and thermal properties of polybenzoxazine and poly-(ε-caprolactone) blends. J Polym Sci Part B Polym Phys 39(7):736–749

    Article  CAS  Google Scholar 

  49. Xu Y, Dai J, Ran QC, Gu Y (2017) Greatly improved thermal properties of polybenzoxazine via modification by acetylene/aldehyde groups. Polymer 123:232–239

    Article  CAS  Google Scholar 

  50. Zeng M, Chen J, Xu Q, Huang Y, Feng Z, Gu Y (2018) Facile preparation of aliphatic main-chain benzoxazine copolymers with high-frequency low dielectric constants. Polym Chem 9(21):2913–2925

    Article  CAS  Google Scholar 

  51. Xu Q, Zeng M, Chen J, Zeng S, Huang Y, Feng Z, Xu Q, Yan C, Gu Y (2018) Synthesis, polymerization kinetics, and high-frequency dielectric properties of novel main-chain benzoxazine copolymers. React Funct Polym 122:158–166

    Article  CAS  Google Scholar 

  52. Runt JP, Fitzgerald JJ (1997) Dielectric spectroscopy of polymeric materials: Fundamental and applications. American Chemical Society, Washington DC

    Google Scholar 

  53. Yu X, Fang Z, Liu Q, Li D, Meng Y, Luo C, Wang K, Lin Z (2022) Effects of peroxide initiator on the structure and properties of ultralow loss thermosetting polyphenylene oxide-based composite. Polymers 14:1752–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Egorov VN, Masalov VL, Nefyodov YA, Shevchun AF, Trunin MR, Zhitomirsky VE, McLean M (2005) Dielectric constant, loss tangent, and surface resistance of PCB materials at k-band frequencies. IEEE Trans Microw Theory Technol 53(2):627–635

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank “555” Innovation Team Program (Huaibei) (2019), Anhui Province, PR China, and Engineering Research Center of Nano-Geomaterials of Ministry of Education (CUG2015), PR China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Zeng or Yang Zhou.

Ethics declarations

Ethical approval

Not Applicable.

Conflicts of interest or competing interests

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2067 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, M., Tan, D., Feng, Z. et al. Preparation of high-performance thermosetting films from novel diallyl bisphenol A/furfurylamine type benzoxazine and oligo(phenylene oxide). J Polym Res 30, 140 (2023). https://doi.org/10.1007/s10965-023-03520-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03520-0

Keywords

Navigation