Skip to main content
Log in

Synergetic enhancement of thermal conductivity in the silica-coated boron nitride (SiO2@BN)/polymethyl methacrylate (PMMA) composites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

High thermal conductivity polymer composites have increased application in modern electronics. To achieve high thermal conductivity at relatively low filler content, two critical approach are used: surface modification of the filler and construction of thermal conductive network in polymer composites. This article provided a new simple and feasible method to modify h-BN consisting of physical absorption of polyvinylpyrrolidone (PVP) and hydrolysis of tetraethyl orthosilicate (TEOS). Then, SiO2@BN/PMMA composites were fabricated via solution-mixing and hot compression. The surface modification of BN enhanced the interface interaction between adjacent BN, which led to reduced thermal resistance and phonon scattering. The solution-mixing and hot compression process ensured the formation of thermal conductive pathway at the same time. The highest thermal conductivity of 40 vol% SiO2@BN/PMMA composite reached 5.583W /m K, which exhibited 3292% and 200% enhancement compared with the pure PMMA and melt-mixing BN/PMMA composites, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang CL, Qian X, Yang RG (2018) Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R 132:1–22. https://doi.org/10.1016/j.mser.2018.06.002

    Article  Google Scholar 

  2. Mehra N, Mu LW, Ji T, Yang XT, Kong J, Gu JW, Zhu JH (2018) Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today 12:92–130. https://doi.org/10.1016/j.apmt.2018.04.004

    Article  Google Scholar 

  3. Zhang K, Feng Y, Wang F, Yang Z, Wang J (2017) Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J Mater Chem C 5:11992–12022. https://doi.org/10.1039/C7TC04300G

    Article  CAS  Google Scholar 

  4. Pan C, Kou KC, Jia Q, Zhang Y, Wu GL, Ji TZ (2017) Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos Part B 111:83–90. https://doi.org/10.1016/j.compositesb.2016.11.050

    Article  CAS  Google Scholar 

  5. Lee J-H, Shin H, Rhee KY (2019) Surface functionalization of boron nitride platelets via a catalytic oxidation/silanization process and thermomechanical properties of boron nitride epoxy composites. Compos Part B 157:276–282. https://doi.org/10.1016/j.compositesb.2018.08.050

    Article  CAS  Google Scholar 

  6. Jiang X, Ma P, You F, Yao C, Yao J, Liu F (2018) A facile strategy for modifying boron nitride and enhancing its effect on the thermal conductivity of polypropylene/polystyrene blends. RSC Adv 8:32132–32137. https://doi.org/10.1039/c8ra06140h

    Article  CAS  Google Scholar 

  7. Ryu S, Kim K, Kim J (2017) Silane surface modification of boron nitride for high thermal conductivity with polyphenylene sulfide via melt mixing method. Polym Adv Technol 28:1489–1494

    Article  CAS  Google Scholar 

  8. Bian W, Yao T, Chen M, Zhang C, Shao T, Yang Y (2018) The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos Sci Technol 168:420–428. https://doi.org/10.1016/j.compscitech.2018.10.002

    Article  CAS  Google Scholar 

  9. Zhang J, Li C, Yu C, Wang X, Li Q, Lu H, Zhang Q, Zhao J, Songfeng E, Hu M, Yao Y (2019) Large improvement of thermal transport and mechanical performance of polyvinyl alcohol composites based on interface enhanced by SiO2 nanoparticle-modified-hexagonal boron nitride. Compos Sci Technol 169:167–175. https://doi.org/10.1016/j.compscitech.2018.11.001

    Article  CAS  Google Scholar 

  10. Alm K, Kim K, Kim J (2015) Fabrication of surface-treated BN/ETDS composites for enhanced thermal and mechanical properties. Ceram Int 41:9488–9495. https://doi.org/10.1016/j.ceramint.2015.04.006

    Article  CAS  Google Scholar 

  11. Du C, Li M, Cao M, Song S, Feng S, Li X, Guo H, Li B (2018) Mussel-inspired and magnetic co-functionalization of hexagonal boron nitride in poly (vinylidene fluoride) composites toward enhanced thermal and mechanical performance for heat exchangers. ACS Appl Mater Interfaces 10:34674–34682. https://doi.org/10.1021/acsami.8b14154

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Huang X, Zhu Y, Jiang P (2017) Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater 27:1–9. https://doi.org/10.1002/adfm.201604754

    Article  CAS  Google Scholar 

  13. Li S, Li Y, Han X, Zhao X, Zhao Y (2019) High-efficiency enhancement on thermal and electrical properties of epoxy nanocomposites with core-shell carbon foam template-coated graphene. Compos Part A 120:95–105. https://doi.org/10.1016/j.compositesa.2019.01.032

    Article  CAS  Google Scholar 

  14. Wang X, Wu P (2018) Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chem Eng J 348:723–731. https://doi.org/10.1016/j.cej.2018.04.196

    Article  CAS  Google Scholar 

  15. Pang H, Xu L, Yan DX, Li ZM (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908–1933. https://doi.org/10.1016/j.progpolymsci.2014.07.007

    Article  CAS  Google Scholar 

  16. Wang Z-G, Huang Y-F, Zhang G-Q, Wang H-Q, Xu J-Z, Lei J, Zhu L, Gong F, Li Z-M (2018) Enhanced thermal conductivity of segregated poly (vinylidene fluoride) composites via forming hybrid conductive network of boron nitride and carbon nanotubes. Ind Eng Chem Res 57:10391–10397. https://doi.org/10.1021/acs.iecr.8b01764

    Article  CAS  Google Scholar 

  17. Wang Z-G, Gong F, Yu W-C, Huang Y-F, Zhu L, Lei J, Xu J-Z, Li Z-M (2018) Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites. Compos Sci Technol 162:7–13. https://doi.org/10.1016/j.compscitech.2018.03.016

    Article  CAS  Google Scholar 

  18. Zhang X, Wu K, Liu Y, Yu B, Zhang Q, Chen F, Fu Q (2019) Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites. Compos Sci Technol 175:135–142. https://doi.org/10.1016/j.compscitech.2019.03.017

    Article  CAS  Google Scholar 

  19. Oh H, Kim J (2019) Fabrication of polymethyl methacrylate composites with silanized boron nitride by in-situ polymerization for high thermal conductivity. Compos Sci Technol 172:153–162. https://doi.org/10.1016/j.compscitech.2019.01.021

    Article  CAS  Google Scholar 

  20. Oh H, Kim K, Ryu S, Kim J (2019) Enhancement of thermal conductivity of polymethyl methacrylate-coated graphene/epoxy composites using admicellar polymerization with different ionic surfactants. Compos Part A 116:206–215. https://doi.org/10.1016/j.compositesa.2018.10.035

    Article  CAS  Google Scholar 

  21. Wang XB, Pakdel A, Zhang J, Weng QH, Zhai TY, Zhi CY, Golberg D, Bando Y (2012) Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res Lett 7:662. https://doi.org/10.1186/1556-276X-7-662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi S, Kim Y, Yun JH, Kim I, Shim SE (2013) PVP-assisted synthesis of dense silica-coated graphite with electrically insulating property. Mater Lett 90:87–89. https://doi.org/10.1016/j.matlet.2012.09.035

    Article  CAS  Google Scholar 

  23. Kim Y, Kim M, Seong H-G, Jung JY, Baeck S-H, Shim SE (2018) Roles of silica-coated layer on graphite for thermal conductivity, heat dissipation, thermal stability, and electrical resistivity of polymer composites. Poly 148:295–302. https://doi.org/10.1016/j.polymer.2018.06.056

    Article  CAS  Google Scholar 

  24. Noma Y, Saga Y, Une N (2014) Amorphous silica-coated graphite particles for thermally conductive and electrically insulating resins. Carbon 78:204–211. https://doi.org/10.1016/j.carbon.2014.06.073

    Article  CAS  Google Scholar 

  25. Foygel M, Morris RD, Anez D, French S, Sobolev VL (2005) Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B 71:104201. https://doi.org/10.1103/PhysRevB.71.104201

    Article  CAS  Google Scholar 

  26. Hu JT, Huang Y, Yao YM, Pan GR, Sun JJ, Zeng XL, Sun R, Xu JB, Song B, Wong CP (2017) Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl Mater Interfaces 9:13544–13553. https://doi.org/10.1021/acsami.7b02410

    Article  CAS  PubMed  Google Scholar 

  27. Chen C, Xue Y, Li Z, Wen YF, Li XW, Wu F, Li XJ, Shi D, Xue ZG, Xie XL (2019) Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles. Chem Eng J 369:1150–1160. https://doi.org/10.1016/j.cej.2019.03.150

    Article  CAS  Google Scholar 

  28. Bisht A, Kumar V, Maity PC, Lahiri I, Lahiri D (2019) Strong and transparent PMMA sheet reinforced with amine functionalized BN nanoflakes for UV-shielding application. Composites Part B 176:107274. https://doi.org/10.1016/j.compositesb.2019.107274

    Article  CAS  Google Scholar 

Download references

Funding

The author would like to acknowledge the financial support from National Key R&D Program of China (No. 2017YFB0406200) and Key Project of Science and Technology Service Network Initiative of the Chinese Academy of Sciences (KFJ-STS-ZDTP-069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Xiao, C., Ding, J. et al. Synergetic enhancement of thermal conductivity in the silica-coated boron nitride (SiO2@BN)/polymethyl methacrylate (PMMA) composites. Colloid Polym Sci 298, 385–393 (2020). https://doi.org/10.1007/s00396-020-04617-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04617-4

Keywords

Navigation