Skip to main content
Log in

Preparation and characterization of low-permittivity polyimide-based composite membrane

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Ultra-low permittivity (κ) materials have broad application prospects in the microelectronic fields. In this study, we prepared microporous polyimide-based composite membranes with ultra-low permittivity by incorporating a trace of cage-like Phenyl-POSS (POSS) into fluorinated polyamic acid (PAA).The effects of POSS incorporation on their dielectric properties correlated with the characteristics of the free volume defects of composite membranes have been investigated by positron annihilation technique. Incorporating POSS with hollow core into PI can effectively improve the free volume size and the relative volume fraction of composite membranes, which optimizes their low dielectric properties, but reduces their dielectric breakdown strength. The membrane with 3wt% POSS presents an ultra-low permittivity (κ = 1.77 at 104 Hz) and maintains excellent mechanical properties. As POSS-doping amount reaches 5wt%, POSS agglomerates in composite membranes, resulting in a rebound in its permittivity. The incorporation of POSS reduces the tensile strength of composite membranes, which can be attributed to the fact that the rigid phenyl-POSS dispersing in the matrix weakens the interaction between the molecular chains of PI. The experimental results can provide valuable information for improving the dielectric properties of polyimide-based membranes in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References:

  1. Kim J, Kwon J, Kim M, Do J, Lee D, Han H (2016) Low-dielectric-constant polyimide aerogel composite films with low water uptake. Polym J 48:829–834

    Article  CAS  Google Scholar 

  2. Liu L, Lv F, Li P, Ding L, Tong W, Chu PK, Zhang Y (2016) Preparation of ultra-low dielectric constant silica/polyimide nanofiber membranes by electrospinning. Compos Part A-Appl S 84:292–298

    Article  CAS  Google Scholar 

  3. Yang C, Dong J, Fang Y, Ma L, Zhao X, Zhang Q (2018) Novel Low-k polyimide fibers with simultaneously excellent mechanical properties. UV-resistance and surface activity by chemically bonded hyperbranchedpolysiloxane. J Mater Chem C 6:1229–1238

    Article  CAS  Google Scholar 

  4. Liu L, Lv F, Zhang Y, Li P, Tong W, Ding L, Zhang G (2017) Enhanced dielectric performance of polyimide composites with modified sandwich-like SiO2@GO hybrids. Compos Part A-Appl S 99:41–47

    Article  CAS  Google Scholar 

  5. Pang W, Cheng X, Zhao H, Guo X (2020) Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms. Natl Sci Rev 7:342–354

    Article  CAS  PubMed  Google Scholar 

  6. Ji D, Li T, Hu W, Fuchs H (2019) Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits. Adv Mater 31:1806070

    Article  Google Scholar 

  7. Qiu G, Ma W, Wu L (2020) Low dielectric constant polyimide mixtures fabricated by polyimide matrix and polyimide microsphere fillers. Polym Int 69:485–491

    Article  CAS  Google Scholar 

  8. Lv M, Wang C, Wang Q, Wang T (2015) Highly stable tribological performance and hydrophobicity of porous polyimide material filled with lubricants in simulated space environment. RSC Adv 5:53543–53549

    Article  CAS  Google Scholar 

  9. Zhang P, Zhao J, Zhang K, Bai R, Wang Y, Hua C, Wu Y, Liu X, Xu H, Li Y (2016) Fluorographene/polyimide composite films: mechanical, electrical, hydrophobic, thermal and low dielectric properties. Compos Part A-Appl S 84:428–434

    Article  CAS  Google Scholar 

  10. Ha HW, Choudhury A, Kamal T, Kim DH, Park SY (2012) Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphenenanocomposites. ACS Appl Mater Interfaces 4:4623–4630

    Article  CAS  PubMed  Google Scholar 

  11. Liu M, Chen Q, Lu K, Huang W, Lü Z, Zhou C, Yu S, Gao C (2017) High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane. Sep Purif Technol 173:135–143

    Article  CAS  Google Scholar 

  12. Liu Y, Qian C, Qu L, Wu Y, Zhang Y, Wu X, Zou B, Chen W, Chen Z, Chi Z, Liu S, Chen X, Xu J (2015) A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem Mater 27:6543–6549

    Article  CAS  Google Scholar 

  13. Ma Y, He Z, Liao Z, Xie J, Yue H, Gao X (2021) Facile strategy for low dielectric constant polyimide/silsesquioxane composite films: structural design inspired from nature. J Mater Sci 56:7397–7408

    Article  CAS  Google Scholar 

  14. Choi S, Lee S, Jeon J, An J, Khan SB, Lee S, Seo J, Han H (2010) A photoinitiator-free photosensitive polyimide with low dielectric constant. J Appl Polym Sci 66:2937–2945

    Google Scholar 

  15. Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomericsilsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2:445–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Yan H, Xu P, Guo L, Yang K, Liu R, Feng W (2021) A novel POSS-containing polyimide: synthesis and its composite coating with graphene-like MoS2 for outstanding tribological performance. Prog Org Coat 151:106013

    Article  CAS  Google Scholar 

  17. Cherkashina NI, Pavlenko VI, Noskov AV, Shkaplerov AN, Kuritsyn AA, Popova EV, Zaitsev SV, Kuprieva OV, Kashibadze NV (2021) Synthesis of PI/POSS nanocomposite films based on track nuclear membranes and assessment of their resistance to oxygen plasma flow. Polymer 212:123192

    Article  CAS  Google Scholar 

  18. Li X, Al-Ostaz A, Jaradat M, Rahmani F, Nouranian S, Rushing G, Manasrah A, Alkhateb H, Finckenor M, Lichtenhan J (2017) Substantially enhanced durability of polyhedral oligomericsilsequioxane-polyimide nanocomposites against atomic oxygen erosion. Eur Polym J 92:233–249

    Article  CAS  Google Scholar 

  19. He Y, Suliga A, Brinkmeyer A, Schenk M, Hamerton I (2019) Atomic oxygen degradation mechanisms of epoxy composites for space applications. Polym Degrad Stabil 166:108–120

    Article  CAS  Google Scholar 

  20. Liu F, Guo H, Zhao Y, Qiu X, Gao L, Zhang Y (2019) Atomic oxygen-resistant polyimide composite fibers based on wet spinning of polyamic acid-POSS ammonium salts. PolymDegradStabil 168:108959

    Google Scholar 

  21. Zhao W, Xu Y, Song C, Chen J, Liu X (2019) Polyimide/mica hybrid films with low coefficient of thermal expansion and low dielectric constant. E-Polymers 19:181–189

    Article  CAS  Google Scholar 

  22. Liu J, Qi N, Zhou B, Chen Z (2019) Exceptionally high CO2 capture in an amorphous polymer with ultramicropores studied by positron annihilation. ACS Appl Mater Inter 11:30747–30755

    Article  CAS  Google Scholar 

  23. Li T, Liu J, Zhao S, Chen Z, Huang H, Guo R, Chen Y (2019) Microporous polyimides containing bulky tetra-o-isopropyl and naphthalenegroups for gas separation membranes. J Membrane Sci 585:282–288

    Article  CAS  Google Scholar 

  24. Zhang Y, Liu J, Wu X, Guo C, Qu L, Zhang X (2018) Trisilanolphenyl-POSS nano-hybrid poly (biphenyldianhydride-p-phenylenediamine) polyimide composite films:miscibility and structure-property relationship. J Polym Res 25:139

    Article  Google Scholar 

  25. Li T, Sun Y, Dai H, Liu J, Chen J, Liu D (2022) Characterization of intrinsic low-polyimide films studied by positron annihilation. Mater Sci Eng B-Adv 272:115652

    Article  Google Scholar 

  26. Devaraju S, Vengatesan MR, Selvi M, Kumar AA, Alagar M (2012) Synthesis and characterization of bisphenol-A ether diamine-based polyimide poss nanocompositesfor low K dielectric and flame-retardant applications. High Perform Polym 24:85–96

    Article  CAS  Google Scholar 

  27. Wang Z, Wang X, Zhao N, He J, Wang S, Wu G, Cheng Y (2021) The desirable dielectric properties and high thermal conductivity of epoxy composites with the cobwebstructuredSiCnw–SiO2–NH2 hybrids. J Mater Sci-Mater El 32:20973–20984

    Article  CAS  Google Scholar 

  28. Kong J, Liu J, Jia P, Qi N, Chen Z, Xu S, Li N (2022) Synergistic effect of thermal crosslinking and thermal rearrangement on free volume and gas separation properties of 6FDA based polyimide membranes studied by positron annihilation. J Membr Sci 645:120163

    Article  CAS  Google Scholar 

  29. Verker R, Grossman E, Gouzmann I, Eliaz N (2009) TriSilanolPhenyl POSS-polyimide nanocomposites: Structure-properties relationship. Compos Sci Technol 69:2178–2184

    Article  CAS  Google Scholar 

  30. Saito H, Hyodo T (2003) Direct measurement of the parapositronium lifetime in alpha-SiO2. Phys Rev Lett 90:19–16

    Article  Google Scholar 

  31. Zhang H, Sellaiyan S, Kakizaki T, Uedono A (2017) Effect of freevolume holes on dynamic mechanical properties of epoxy resins for carbon-fifiberreinforced polymers. Macromolecules 50:3933–3942

    Article  CAS  Google Scholar 

  32. Zhao Y, Huang R, Wu Z, Zhang H, Zhou Z, Li L, Dong Y, Luo M, Ye B, Zhang H (2021) Effect of free volume on cryogenic mechanical properties of epoxy resin reinforced by hyperbranched polymers. Mater Design 202:109565

    Article  CAS  Google Scholar 

  33. He Z, Xie J, Liao Z, Ma Y, Zhang M, Zhang W, Yue H, Gao X (2021) Hierarchical porous structure contained composite polyimide film with enhanced dielectric and water resistance properties for dielectric material. Prog Org Coat 151:106030

    Article  CAS  Google Scholar 

  34. Zhang P, Zhao J, Zhang K, Wu Y, Li Y (2018) Effect of co-solvent on the structure and dielectric properties of porous polyimide membranes. J Phys D ApplPhys 51:215305

    Article  Google Scholar 

  35. Huang X, Liu X, Jia Z, Wang B, Wu X, Wu G (2021) Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv Compos Hybrid Ma 4:1398–1412

    Article  CAS  Google Scholar 

  36. Zheng T, Jia Z, Zhan Q, Ling M, Su Y, Wang B, Zhang C, Wu G (2022) Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption. Carbon 186:262–272

    Article  CAS  Google Scholar 

  37. Vangchangyia S, Swatsitang E, Thongbai P, Pinitsoontorn S, Yamwong T, Maensiri S, Amornkitbamrung V (2012) Very low loss tangent and high dielectric permittivity in pure-CaCu3Ti4O12 ceramics prepared by a modifified sol-gel process. J Am CeramSoc 95:1497–1500

    Article  CAS  Google Scholar 

  38. Wang Z, Wang X, Wang S, He J, Zhang T, Wang J, Wu G (2021) Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich AlN/epoxy composites. Nanomaterials 11:1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhong M, Wu X, Shu C, Wang Y, Huang X, Huang W (2021) Organosoluble polyimides with low dielectric constant prepared from an asymmetric diamine containing bulky m-trifluoromethyl phenyl group. React Funct Polym 169:105065

    Article  CAS  Google Scholar 

  40. Li Y, Yin J, Feng Y, Li J, Zhao H, Zhu C, Yue D, Liu Y, Su B, Liu X (2022) Metal-organic Framework/Polyimide composite with enhanced breakdown strength for flexible capacitor. Chem Eng J 429:132228

    Article  CAS  Google Scholar 

  41. Li S, Xie D, Lei Q (2020) Understanding insulation failure of nanodielectrics: Tailoring carrier energy. High Volt 5:643–649

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Project of National Natural Science Foundation of China (No. 11975211, 12275242) and Key Research and Development and Promotion Project in Henan Province (No.232102230150).The authors express their gratitude to National Science Foundation of China and Key Research and Development and Promotion Projects in Henan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhang, Y., Sun, Y. et al. Preparation and characterization of low-permittivity polyimide-based composite membrane. J Polym Res 30, 134 (2023). https://doi.org/10.1007/s10965-023-03508-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03508-w

Keywords

Navigation