Skip to main content
Log in

PVDF-based composites for electromagnetic shielding application: a review

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

With the rapid development of information technology, electromagnetic shielding materials are playing an increasingly significant role in electronic reliability, healthcare, and national defense security. Hence, developing high performance electromagnetic shielding materials with thin thickness, low density, wide bandwidth, and strong absorption has attracted great interests. Recently, polyvinylidene fluoride (PVDF) as high-performance electromagnetic shielding materials has grabbed considerable attention, owing to its low density, good flexibility, stable corrosion resistance and favorable shaping capability. In this review, we firstly introduce the theory of electromagnetic shielding. In the main part, the preparation and recent advances of PVDF-based electromagnetic shielding composites are summarized, including single-, binary-, and multi-component filler composites, microstructure design of composites, and the factors influencing the EMI SE performance. The key point to enhance the EMI SE performance is to modulate the electromagnetic and dielectric properties of the composites to create diversified loss mechanisms. Finally, the shortcomings, challenges, and prospects of PVDF-based electromagnetic shielding materials are also put forward, which will be helpful to people working in the related fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data availability is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Zhang L (2013) Research on preparation and property of alternating multilayer polymer electromagnetic shielding materials. Appl Mech Mater 443:634–638

    Article  Google Scholar 

  2. Zhan Y, Oliviero M, Wang J et al (2019) Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11:1011–1020. https://doi.org/10.1039/c8nr07351a

    Article  CAS  PubMed  Google Scholar 

  3. Yousefi N, Sun X, Lin X et al (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487. https://doi.org/10.1002/adma.201305293

    Article  CAS  PubMed  Google Scholar 

  4. Yao B, Hong W, Chen T et al (2020) Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv Mater 32:e1907499. https://doi.org/10.1002/adma.201907499

    Article  CAS  PubMed  Google Scholar 

  5. Xu H, Yin X, Li X et al (2019) Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl Mater Inter 11:10198–10207. https://doi.org/10.1021/acsami.8b21671

    Article  CAS  Google Scholar 

  6. Weng GM, Li J, Alhabeb M et al (2018) Layer-by‐layer assembly of cross‐functional semi‐transparent MXene‐carbon nanotubes composite films for next‐generation electromagnetic interference shielding. Adv Functi Mater 28. https://doi.org/10.1002/adfm.201803360

  7. Song Q, Ye F, Yin X et al (2017) Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv Mater 29. https://doi.org/10.1002/adma.201701583

  8. Ma Z, Kang S, Ma J et al (2020) Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14:8368–8382. https://doi.org/10.1021/acsnano.0c02401

    Article  CAS  PubMed  Google Scholar 

  9. Siddique S, Zahid M, Anum R et al (2021) Fabrication and characterization of PVC based flexible nanocomposites for the shielding against EMI, NIR, and thermal imaging signals. Results Phys 24. https://doi.org/10.1016/j.rinp.2021.104183

  10. Joseph J, Koroth AK, John DA et al (2019) Highly filled multilayer thermoplastic/graphene conducting composite structures with high strength and thermal stability for electromagnetic interference shielding applications. J Appl Polym Sci 136. https://doi.org/10.1002/app.47792

  11. Ma F, Yuan N, Ding J (2013) The conductive network made up by the reduced graphene nanosheet/polyaniline/polyvinyl chloride. J Appl Polym Sci 128:3870–3875. https://doi.org/10.1002/app.386243674

    Article  CAS  Google Scholar 

  12. Meng F, Wang H, Huang F et al (2018) Graphene-based microwave absorbing composites: a review and prospective. Compos Part B-Eng 137:260–277. https://doi.org/10.1016/j.compositesb.2017.11.023

    Article  CAS  Google Scholar 

  13. Liu S, Qin S, Jiang Y et al (2021) Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Compos Part A Appl Sci 145. https://doi.org/10.1016/j.compositesa.2021.106376

  14. Liang L, Xu P, Wang Y et al (2020) Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management. Chem Eng J 395. https://doi.org/10.1016/j.cej.2020.125209

  15. Liang C, Qiu H, Han Y et al (2019) Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J Mater Chem C 7:2725–2733. https://doi.org/10.1039/c8tc05955a

    Article  CAS  Google Scholar 

  16. Liu J, Zhang HB, Sun R et al (2017) Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater 29. https://doi.org/10.1002/adma.201702367

  17. Xu W, Pan Y-F, Wei W et al (2018) Nanocomposites of oriented nickel chains with tunable magnetic properties for high-performance broadband microwave absorption. ACS Appl Nano Mater 1:1116–1123. https://doi.org/10.1021/acsanm.7b00293

    Article  CAS  Google Scholar 

  18. Zhang P, Ding X, Wang Y et al (2019) Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal. Compos Part A-Appl S 117:56–64. https://doi.org/10.1016/j.compositesa.2018.11.007

    Article  CAS  Google Scholar 

  19. Zhao B, Wang R, Li Y et al (2020) Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J Mater Chem C 8:7401–7410. https://doi.org/10.1039/d0tc00987c

    Article  CAS  Google Scholar 

  20. Dou R, Shao Y, Li S et al (2016) Structuring tri-continuous structure multiphase composites with ultralow conductive percolation threshold and excellent electromagnetic shielding effectiveness using simple melt mixing. Polymer-Basel 83:34–39. https://doi.org/10.1016/j.polymer.2015.12.005

    Article  CAS  Google Scholar 

  21. Pontes K, Indrusiak T, Soares BG (2020) Poly(vinylidene fluoride-co‐hexafluorpropylene)/polyaniline conductive blends: Effect of the mixing procedure on the electrical properties and electromagnetic interference shielding effectiveness. J Appl Polym Sci 138. https://doi.org/10.1002/app.49705

  22. Lee S, Park J, Kim MC et al (2021) Polyvinylidene fluoride core-shell nanofiber membranes with highly conductive shells for electromagnetic interference shielding. ACS Appl Mater Interfaces 13:25428–22537. https://doi.org/10.1021/acsami.1c06230

    Article  CAS  PubMed  Google Scholar 

  23. Biswas S, Dutta S, Panja SS et al (2019) Template-free synthesis of “wool-ball”-like hollow CuS structures can effectively suppress electromagnetic radiation: a mechanistic insight. J Phys Chem C 123:17136–17147. https://doi.org/10.1021/acs.jpcc.9b03753

    Article  CAS  Google Scholar 

  24. Aepuru R, Bhaskara Rao BV, Kale SN et al (2015) Unique negative permittivity of the pseudo conducting radial zinc oxide-poly(vinylidene fluoride) nanocomposite film: enhanced dielectric and electromagnetic interference shielding properties. Mater Chem Phys 167:61–69. https://doi.org/10.1016/j.matchemphys.2015.10.010

    Article  CAS  Google Scholar 

  25. Darwish MA, Afifi AI, Abd El-Hameed AS et al (2021) Can hexaferrite composites be used as a new artificial material for antenna applications? Ceram Int 47:2615–2623. https://doi.org/10.1016/j.ceramint.2020.09.108

    Article  CAS  Google Scholar 

  26. Sutradhar S, Saha S, Javed S (2019) Shielding effectiveness study of barium hexaferrite-incorporated, beta-phase-improved poly(vinylidene fluoride) composite film: a metamaterial useful for the reduction of electromagnetic pollution. ACS Appl Mater Inter 11:23701–23713. https://doi.org/10.1021/acsami.9b05122

    Article  CAS  Google Scholar 

  27. Wu Y, Wang Z, Liu X et al (2017) Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl Mater Inter 9:9059–9069. https://doi.org/10.1021/acsami.7b01017

    Article  CAS  Google Scholar 

  28. Zhang K, Li G-H, Feng L-M et al (2017) Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(l-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J Mater Chem C 5:9359–9369. https://doi.org/10.1039/c7tc02948a

    Article  CAS  Google Scholar 

  29. Kruželák J, Kvasničáková A, Hložeková K et al (2021) Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adva 3:123–172. https://doi.org/10.1039/d0na00760a

    Article  CAS  Google Scholar 

  30. Kamal Halder K, Sonker RK, Sachdev VK et al (2019) Study of electrical, dielectric and EMI shielding behavior of copper metal, copper ferrite and PVDF composite. Integr Ferroelectr 194:80–87. https://doi.org/10.1080/10584587.2018.1514879

    Article  CAS  Google Scholar 

  31. Joseph N, Singh SK, Sirugudu RK et al (2013) Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater Res Bull 48:1681–1687. https://doi.org/10.1016/j.materresbull.2012.11.115

    Article  CAS  Google Scholar 

  32. Choudhary HK, Kumar R, Pawar SP et al (2020) Effect of morphology and role of conductivity of embedded metallic nanoparticles on electromagnetic interference shielding of PVDF-carbonaceous-nanofiller composites. Carbon 164:357–368. https://doi.org/10.1016/j.carbon.2020.04.007

    Article  CAS  Google Scholar 

  33. Arjmand M, Chizari K, Krause B et al (2016) Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon 98:358–372. https://doi.org/10.1016/j.carbon.2015.11.024

    Article  CAS  Google Scholar 

  34. Arjmand M, Mirkhani SA, Pötschke P et al (2017) Impact of synthesis temperature on structure of carbon nanotubes and morphological and electrical characterization of their polymeric nanocomposites. Proceedings of PPS-32: The 32nd international conference of the polymer processing society 1:1–5

  35. Gargama H, Thakur AK, Chaturvedi SK (2017) Microwave characterization of nickel-based nanocomposites — high EMI shielding and radar absorption capability. Mod Phys Lett B 31. https://doi.org/10.1142/s0217984917503018

  36. Wang SJ, Li DS, Jiang L (2019) Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv Mater Inter 6. https://doi.org/10.1002/admi.201900961

  37. Sang M, Wang S, Liu S et al (2019) A hydrophobic, self-powered, electromagnetic shielding pvdf-based wearable device for human body monitoring and protection. ACS Appl Mater Inter 11:47340–47349. https://doi.org/10.1021/acsami.9b16120

    Article  CAS  Google Scholar 

  38. Menon AV, Madras G, Bose S (2016) Phase specific dispersion of functional nanoparticles in soft nanocomposites resulting in enhanced electromagnetic screening ability dominated by absorption. Phys Chem Chem Phys 19:467–479. https://doi.org/10.1039/c6cp07355g

    Article  PubMed  Google Scholar 

  39. Kumar GS, Vishnupriya D, Joshi A et al (2015) Electromagnetic interference shielding in 1–18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)-multi-walled carbon nanotube composites. Phys Chem Chem Phys 17:20347–20360. https://doi.org/10.1039/c5cp02585k

    Article  CAS  PubMed  Google Scholar 

  40. Kumar GS, Patro TU (2018) Efficient electromagnetic interference shielding and radar absorbing properties of ultrathin and flexible polymer-carbon nanotube composite films. Mater Res Expres 5. https://doi.org/10.1088/2053-1591/aade39

  41. Wang H, Zheng K, Zhang X et al (2016) Segregated poly(vinylidene fluoride)/MWCNTs composites for high-performance electromagnetic interference shielding. Compos Part A-Appl S 90:606–613. https://doi.org/10.1016/j.compositesa.2016.08.030

    Article  CAS  Google Scholar 

  42. Wang H, Zheng K, Zhang X et al (2016) 3D network porous polymeric composites with outstanding electromagnetic interference shielding. Compos Sci Technol 125:22–29. https://doi.org/10.1016/j.compscitech.2016.01.007

    Article  CAS  Google Scholar 

  43. Zhang P, Ding X, Wang Y et al (2019) Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal conductivity. ACS Appl Polym Mater 1:2006–2014. https://doi.org/10.1021/acsapm.9b00258

    Article  CAS  Google Scholar 

  44. Bera R, Paria S, Karan SK et al (2017) NaCl leached sustainable porous flexible Fe3O4 decorated RGO-polyaniline/PVDF composite for durable application against electromagnetic pollution. Express Polym Lett 11:419–433. https://doi.org/10.3144/expresspolymlett.2017.40

    Article  CAS  Google Scholar 

  45. Zhao B, Wang S, Zhao C et al (2018) Synergism between carbon materials and ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon 127:469–478. https://doi.org/10.1016/j.carbon.2017.11.032

    Article  CAS  Google Scholar 

  46. Qi Q, Ma L, Zhao B et al (2020) An effective design strategy for the sandwich structure of pvdf/gnp-ni-cnt composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl Mater Inter 12:36568–36577. https://doi.org/10.1021/acsami.0c10600

    Article  CAS  Google Scholar 

  47. Zhao B, Park CB (2017) Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. J Mater Chem C 5:6954–6961. https://doi.org/10.1039/c7tc01865g

    Article  CAS  Google Scholar 

  48. Rani P, Ahamed B, Deshmukh K (2020) Dielectric and electromagnetic interference shielding properties of zeolite 13X and carbon black nanoparticles based PVDF nanocomposites. J Appl Polym Sci 138. https://doi.org/10.1002/app.50107

  49. Dabas S, Chahar M, Thakur OP (2022) Electromagnetic interference shielding properties of CoFe2O4/polyaniline/poly(vinylidene fluoride) nanocomposites. Mater Chem Phys 278. https://doi.org/10.1016/j.matchemphys.2021.125579

  50. Sang M, Liu S, Li W,  et al (2022) Flexible polyvinylidene fluoride(PVDF)/MXene(Ti3C2Tx)/Polyimide(PI) wearable electronic for body Monitoring, thermotherapy and electromagnetic interference shielding. Compos Part A- Appl Sci 153. https://doi.org/10.1016/j.compositesa.2021.106727

  51. Kar E, Bose N, Dutta B et al (2017) Poly(vinylidene fluoride)/submicron graphite platelet composite: a smart, lightweight flexible material with significantly enhanced β polymorphism, dielectric and microwave shielding properties. Eur Polym J 90:442–455. https://doi.org/10.1016/j.eurpolymj.2017.03.030

    Article  CAS  Google Scholar 

  52. Sabira K, Jayakrishnan MP, Saheeda P et al (2018) On the absorption dominated EMI shielding effects in free standing and flexible films of poly(vinylidene fluoride)/graphene nanocomposite. Eur Polym J 99:437–444. https://doi.org/10.1016/j.eurpolymj.2017.12.034

    Article  CAS  Google Scholar 

  53. Gebrekrstos A, Muzata TS, Ray SS (2022) Nanoparticle-enhanced β-phase formation in electroactive PVDF composites: a review of systems for applications in energy harvesting, emi shielding, and membrane technology. ACS Appl Nano Mater 5:7632–7651. https://doi.org/10.1021/acsanm.2c02183

    Article  CAS  Google Scholar 

  54. Kumar YR, Khadheer Pasha SK (2022) Synergistic effect of barium titanate nanoparticles and graphene quantum dots on the dielectric properties and conductivity of poly(vinylidenefluoride-co-hexafluoroethylene) films. Environ Res 204:112297. https://doi.org/10.1016/j.envres.2021.112297

    Article  CAS  PubMed  Google Scholar 

  55. Sharma D, Menon AV, Bose S (2020) Graphene templated growth of copper sulphide ‘flowers’ can suppress electromagnetic interference. Nanoscale Adv 2:3292–3303. https://doi.org/10.1039/d0na00368a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rajavel K, Luo S, Wan Y et al (2020) 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Compos Part A-Appl S 129:105693. https://doi.org/10.1016/j.compositesa.2019.105693

    Article  CAS  Google Scholar 

  57. Ma H, Qin C, Jin B et al (2022) Using a supercritical fluid-assisted thin cell wall stretching–defoaming method to enhance the nanofiller dispersion, emi shielding, and thermal conduction property of CNF/PVDF nanocomposites. Ind Eng Chem Res 61:3647–3659. https://doi.org/10.1021/acs.iecr.1c05052

    Article  CAS  Google Scholar 

  58. Yang R, Zhou Y, Ren Y et al (2022) Promising PVDF-CNT-Graphene-NiCo chains composite films with excellent electromagnetic interference shielding performance. Alloy Compd 908. https://doi.org/10.1016/j.jallcom.2022.164538

  59. Biswas S, Panja SS, Bose S (2017) A novel fluorophore–spacer–receptor to conjugate MWNTs and ferrite nanoparticles to design an ultra-thin shield to screen electromagnetic radiation. Mater Chem Front 1:132–145. https://doi.org/10.1039/c6qm00074f

    Article  CAS  Google Scholar 

  60. Biswas S, Panja SS, Bose S (2017) Unique multilayered assembly consisting of “flower-like” ferrite nanoclusters conjugated with MWCNT as millimeter wave absorbers. J Phys Chem C 121:13998–14009. https://doi.org/10.1021/acs.jpcc.7b02668

    Article  CAS  Google Scholar 

  61. Liu Q, Zhang Y, Liu Y et al (2022) Magnetic field-induced strategy for synergistic CI/Ti3C2Tx/PVDF multilayer structured composite films with excellent electromagnetic interference shielding performance. J Mate Sci Technol 110:246–259. https://doi.org/10.1016/j.jmst.2021.06.084

    Article  Google Scholar 

  62. Liang C, Hamidinejad M, Ma L et al (2020) Lightweight and flexible graphene/SiC-nanowires/poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon 156:58–66. https://doi.org/10.1016/j.carbon.2019.09.044

    Article  CAS  Google Scholar 

  63. Zhang H, Zhang G, Gao Q et al (2020) Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem Eng J 379. https://doi.org/10.1016/j.cej.2019.122304

    Article  Google Scholar 

  64. Tuichai W, Karaphun A, Ruttanapun C (2022) Improved dielectric properties of PVDF polymer composites filled with ag nanomaterial deposited reduced graphene oxide (rGO) hybrid particles. Mater Res Bull 145. https://doi.org/10.1016/j.materresbull.2021.111552

  65. Habibpour S, Zarshenas K, Zhang M et al (2022) Greatly enhanced electromagnetic interference shielding effectiveness and mechanical properties of polyaniline-grafted Ti3C2Tx MXene-PVDF composites. ACS Appl Mater Inter 14:21521–21534. https://doi.org/10.1021/acsami.2c03121

    Article  CAS  Google Scholar 

  66. Kazmi SJ, Nadeem M, Warsi MA et al (2022) PVDF/CFO-anchored CNTs ternary composite system with enhanced EMI shielding and EMW absorption properties. J Alloy Compd 903. https://doi.org/10.1016/j.jallcom.2022.163938

  67. Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111. https://doi.org/10.1063/1.3688435

  68. Liu S, Chevali VS, Xu Z et al (2018) A review of extending performance of epoxy resins using carbon nanomaterials. Compos Part B-Eng 136:197–214. https://doi.org/10.1016/j.compositesb.2017.08.020

    Article  CAS  Google Scholar 

  69. Nazir A (2020) A review of polyvinylidene fluoride (PVDF), polyurethane (PU), and polyaniline (PANI) composites-based materials for electromagnetic interference shielding. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705720925120

    Article  Google Scholar 

  70. Sankaran S, Deshmukh K, Ahamed MB et al (2018) Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos Part A-Appl S 114:49–71. https://doi.org/10.1016/j.compositesa.2018.08.006

    Article  CAS  Google Scholar 

  71. Liang C, Gu Z, Zhang Y et al (2021) Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nanomicro Lett 13:181. https://doi.org/10.1007/s40820-021-00707-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gargama H, Thakur AK, Chaturvedi SK (2016) Polyvinylidene fluoride/nanocrystalline iron composite materials for EMI shielding and absorption applications. J Alloy Compd 654:209–215. https://doi.org/10.1016/j.jallcom.2015.09.059

    Article  CAS  Google Scholar 

  73. Kumar R, Choudhary HK, Pawar SP et al (2017) Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Phys Chem Chem Phy 19:23268–23279. https://doi.org/10.1039/c7cp03175k

    Article  CAS  Google Scholar 

  74. Joseph J, Deshmukh K, Raj AN et al (2021) Electromagnetic interference shielding characteristics of SrTiO3 nanoparticles induced polyvinyl chloride and polyvinylidene fluoride blend nanocomposites. J Inorg Organomet P 31:3481–3495. https://doi.org/10.1007/s10904-021-01959-6

    Article  CAS  Google Scholar 

  75. Bera R, Das AK, Maitra A et al (2017) Salt leached viable porous Fe3O4 decorated polyaniline – SWCNH/PVDF composite spectacles as an admirable electromagnetic shielding efficiency in extended Ku-band region. Compos Part B-Eng 129:210–220. https://doi.org/10.1016/j.compositesb.2017.07.073

    Article  CAS  Google Scholar 

  76. Dutta B, Kar E, Sen G et al (2020) Lightweight, flexible NiO@SiO2/PVDF nanocomposite film for UV protection and EMI shielding application. Mater Res Bull 124. https://doi.org/10.1016/j.materresbull.2019.110746

  77. Choudhary HK, Kumar R, Pawar SP et al (2019) Enhancing absorption dominated microwave shielding in Co@C-PVDF nanocomposites through improved magnetization and graphitization of the Co@C-nanoparticles. Phys Chem Chem Phy 21:15595–15608. https://doi.org/10.1039/c9cp03305j

    Article  CAS  Google Scholar 

  78. Lakshmi NV, Tambe P (2017) EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Compos Interface 24:861–882. https://doi.org/10.1080/09276440.2017.1302202

    Article  CAS  Google Scholar 

  79. Qian J, Zhang ZM, Bao RY et al (2020) Lightweight poly (vinylidene fluoride)/silver nanowires hybrid membrane with different conductive network structure for electromagnetic interference shielding. Polym Compos 42:522–531. https://doi.org/10.1002/pc.25844

    Article  CAS  Google Scholar 

  80. Meher D, Suman, Karna N et al (2019) Development of Poly (vinylidene fluoride) and Polyaniline blend with high dielectric permittivity, excellent electromagnetic shielding effectiveness and ultra low optical energy band gap: Effect of ionic liquid and temperature. Polymer 181. https://doi.org/10.1016/j.polymer.2019.121759

  81. Chakraborty T, Debnath T, Bhowmick S et al (2020) Enhancement of EMI shielding effectiveness of flexible Co2U-type hexaferrite (Ba4Co2Fe36O60)-poly(vinylidene fluoride) heterostructure composite materials: an improved radar absorbing material to combat against electromagnetic pollution. J Appl Phys 128. https://doi.org/10.1063/5.0015161

  82. Sankaran S, Deshmukh K, Ahamed MB et al (2018) Electrical and electromagnetic interference (EMI) shielding properties of hexagonal boron nitride nanoparticles reinforced polyvinylidene fluoride nanocomposite films. Polym-Plast Technol Mater 58:1191–1209. https://doi.org/10.1080/03602559.2018.1542725

    Article  CAS  Google Scholar 

  83. Peymanfar R, Ahmadi A, Selseleh-Zakerin E (2020) Evaluation of the size and medium effects on the microwave absorbing, magnetic, electromagnetic shielding, and optical properties using CuCo2S4 nanoparticles. J Alloy Compd 848. https://doi.org/10.1016/j.jallcom.2020.156453

  84. Arranz-Andrés J, Pérez E, Cerrada ML (2012) Hybrids based on poly(vinylidene fluoride) and Cu nanoparticles: characterization and EMI shielding. Eur Polym J 48:1160–1168. https://doi.org/10.1016/j.eurpolymj.2012.04.006

    Article  CAS  Google Scholar 

  85. Arranz-Andrés J, Pulido-González N, Fonseca C et al (2013) Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: structural, thermal and mechanical characterization and EMI shielding capability. Mater Chem Phys 142:469–478. https://doi.org/10.1016/j.matchemphys.2013.06.038

    Article  CAS  Google Scholar 

  86. Kumaran R, kumar SD, Balasubramanian N et al (2016) Enhanced electromagnetic interference shielding in a Au–MWCNT composite nanostructure dispersed PVDF thin films. J Phys Chem C 120:13771–13778. https://doi.org/10.1021/acs.jpcc.6b01333

    Article  CAS  Google Scholar 

  87. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene-PVDF foam composites for emi shielding. Macromol Mater Eng 296:894–898. https://doi.org/10.1002/mame.201100035

    Article  CAS  Google Scholar 

  88. Joseph N, Thomas Sebastian M (2013) Electromagnetic interference shielding nature of PVDF-carbonyl iron composites. Mater Lett 90:64–67. https://doi.org/10.1016/j.matlet.2012.09.01

    Article  CAS  Google Scholar 

  89. Gargama H, Thakur AK, Chaturvedi SK (2015) Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications. J Appl Phys 117. https://doi.org/10.1063/1.4922411

  90. Yu C, Liang X, Zhao T et al (2019) Synthesis and electromagnetic shielding performance of nickel nanowires with controllable morphology. Mater Lett 236:112–115. https://doi.org/10.1016/j.matlet.2018.10.074

    Article  CAS  Google Scholar 

  91. Dutta B, Bose N, Kar E et al (2017) Smart, lightweight, flexible NiO/poly(vinylidene flouride) nanocomposites film with significantly enhanced dielectric, piezoelectric and EMI shielding properties. J Polym Res 24. https://doi.org/10.1007/s10965-017-1396-z

  92. Lee BO, Woo WJ, Park HS et al (2002) Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofiber. J Mater Sci 37:1839–1843. https://doi.org/10.1023/A:1014970528482

    Article  CAS  Google Scholar 

  93. Naseer A, Mumtaz M, Raffi M et al (2018) Reinforcement of electromagnetic wave absorption characteristics in PVDF-PMMA nanocomposite by intercalation of carbon nanofibers. Electron Mater Lett 15:201–207. https://doi.org/10.1007/s13391-018-00104-9

    Article  CAS  Google Scholar 

  94. Yilmaz AC, Ozen MS, Sancak E et al (2018) Analyses of the mechanical, electrical and electromagnetic shielding properties of thermoplastic composites doped with conductive nanofillers. Compos Mater 52:1423–1432. https://doi.org/10.1177/0021998317752503

    Article  CAS  Google Scholar 

  95. Yuksek M (2020) Electromagnetic wave shielding and mechanical properties of vapor-grown carbon nanofiber/polyvinylidene fluoride composite fibers. J Eng Fiber Fabr 15. https://doi.org/10.1177/1558925020985959

  96. Tian K, Wang H, Su Z et al (2017) Few-layer graphene sheets/poly(vinylidene fluoride) composites prepared by a water vapor induced phase separation method. Mater Res Express 4. https://doi.org/10.1088/2053-1591/aa6a35

  97. Woon-Soo K, Hee SS, Bang OL et al (2002) Electrical Properties of PVDF/PVP composite filled with Carbon Nanotubes prepared by floating Catalyst Method. Macromol Res 10:253–258. https://doi.org/10.1007/BF03218314

    Article  Google Scholar 

  98. Ram R, Khastgir D, Rahaman M (2018) Physical properties of polyvinylidene fluoride/multi-walled carbon nanotube nanocomposites with special reference to electromagnetic interference shielding effectiveness. Adv Polym Technol 37:3287–3296. https://doi.org/10.1002/adv.22113

    Article  CAS  Google Scholar 

  99. Joseph N, Varghese J, Sebastian MT (2017) Graphite reinforced polyvinylidene fluoride composites an efficient and sustainable solution for electromagnetic pollution. Compos Part B-Eng 123:271–278. https://doi.org/10.1016/j.compositesb.2017.05.030

    Article  CAS  Google Scholar 

  100. Halder KK, Tomar M, Sachdev VK et al (2019) Carbonized charcoal-loaded PVDF polymer composite: a promising EMI shielding material. Arab J Sci Eng 45:465–574. https://doi.org/10.1007/s13369-019-04054-8

    Article  CAS  Google Scholar 

  101. Halder KK, Tomar M, Sachdev VK et al (2019) Development of polyvinylidene fluoride–graphite composites as an alternate material for electromagnetic shielding applications. Mater Res Express 6. https://doi.org/10.1088/2053-1591/ab13dd

  102. Lira EC, Bolzan A, Nascimento AR et al (2020) Electromagnetic interference shielding effectiveness and skin depth of polyvinylidene fluoride – particulate nano carbon fillers composites: prediction of electrical conductivity and percolation threshold. Pest Manag Sci 76:2674–2680. https://doi.org/10.1002/ps.581

    Article  CAS  PubMed  Google Scholar 

  103. Fan Z, Liu R, Cheng X (2021) Nonwoven composite endowed with electromagnetic shielding performance by graphene nanosheets adherence. J Text I 1–7. https://doi.org/10.1080/00405000.2021.1929707

  104. Fan Z, Liu R, Cheng X (2021) Preparation and characterization of electromagnetic shielding composites based on graphene-nanosheets-loaded nonwoven fabric. Coatings 11. https://doi.org/10.3390/coatings11040424

  105. Sharma M, Sharma S, Abraham J et al (2014) Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. Mater Res Express 1. https://doi.org/10.1088/2053-1591/1/3/035003

  106. Kar GP, Biswas S, Bose S (2015) Simultaneous enhancement in mechanical strength, electrical conductivity, and electromagnetic shielding properties in PVDF-ABS blends containing PMMA wrapped multiwall carbon nanotubes. Phys Chem Chem Phys 17:14856–14865. https://doi.org/10.1039/c5cp01452b

    Article  CAS  PubMed  Google Scholar 

  107. Kumar P, Kumar A, Cho KY et al (2017) An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding. AIP Adv 7. https://doi.org/10.1063/1.4973535

  108. Gebrekrstos A, Biswas S, Menon AV et al (2019) Multi-layered stack consisting of PVDF nanocomposites with flow-induced oriented MWCNT structure can supress electromagnetic radiation. Compos Part B-Eng 166:749–757. https://doi.org/10.1016/j.compositesb.2019.03.008

    Article  CAS  Google Scholar 

  109. Zha X-J, Pu J-H, Ma L-F et al (2018) A particular interfacial strategy in PVDF/OBC/MWCNT nanocomposites for high dielectric performance and electromagnetic interference shielding. Compos Part A-Appl S 105:118–125. https://doi.org/10.1016/j.compositesa.2017.11.011

    Article  CAS  Google Scholar 

  110. Salehiyan R, Nofar M, Ray SS et al (2019) Kinetically controlled localization of carbon nanotubes in polylactide/poly(vinylidene fluoride) blend nanocomposites and their influence on electromagnetic interference shielding, electrical conductivity, and rheological properties. J Phys Chem C 123:19195–19207. https://doi.org/10.1021/acs.jpcc.9b04494

    Article  CAS  Google Scholar 

  111. Sultana SMN, Pawar SP, Kamkar M et al (2019) Tailoring MWCNT dispersion, blend morphology and EMI shielding properties by sequential mixing strategy in immiscible PS/PVDF blends. J Electron Mater 49:1588–1600. https://doi.org/10.1007/s11664-019-07371-8

    Article  CAS  Google Scholar 

  112. Yang Y, Feng C, Zhou Y et al (2020) Achieving improved electromagnetic interference shielding performance and balanced mechanical properties in polyketone nanocomposites via a composite MWCNTs carrier. Compos Part A-Appl Sci 136. https://doi.org/10.1016/j.compositesa.2020.10596

  113. Arjmand M, Sundararaj U (2015) Electromagnetic interference shielding of nitrogen-doped and undoped carbon nanotube/polyvinylidene fluoride nanocomposites: a comparative study. Compos Sci Technol 118:257–263. https://doi.org/10.1016/j.compscitech.2015.09.012

    Article  CAS  Google Scholar 

  114. Pawar SP, Arjmand M, Gandi M et al (2016) Critical insights into understanding the effects of synthesis temperature and nitrogen doping towards charge storage capability and microwave shielding in nitrogen-doped carbon nanotube/polymer nanocomposites. RSC Adv 6:63224–63234. https://doi.org/10.1039/c6ra15037c

    Article  CAS  Google Scholar 

  115. Mirkhani SA, Arjmand M, Sadeghi S et al (2017) Impact of synthesis temperature on morphology, rheology and electromagnetic interference shielding of CVD-grown carbon nanotube/polyvinylidene fluoride nanocomposites. Synth Met 230:39–50. https://doi.org/10.1016/j.synthmet.2017.06.003

    Article  CAS  Google Scholar 

  116. Keteklahijani YZ, Arjmand M, Sundararaj U (2017) Cobalt catalyst grown carbon nanotube/poly(vinylidene fluoride) nanocomposites: effect of synthesis temperature on morphology, electrical conductivity and electromagnetic interference shielding. ChemistrySelect 2:1027–110284. https://doi.org/10.1002/slct.201701929

    Article  CAS  Google Scholar 

  117. Choudhary HK, Kumar R, Pawar SP et al (2021) Role of graphitization-controlled conductivity in enhancing absorption dominated EMI shielding behavior of pyrolysis-derived Fe3C@C-PVDF nanocomposites. Mater Chem Phys 263. https://doi.org/10.1016/j.matchemphys.2021.124429

    Article  Google Scholar 

  118. Choudhary HK, Kumar R, Pawar SP et al (2021) Superiority of graphite coated metallic-nanoparticles over graphite coated insulating-nanoparticles for enhancing EMI shielding. New J Chem 45:4592–4600. https://doi.org/10.1039/d0nj06231f

    Article  CAS  Google Scholar 

  119. Bhaskara Rao BV, Kale N, Kothavale BS et al (2016) Fabrication and evaluation of thin layer PVDF composites using MWCNT reinforcement: mechanical, electrical and enhanced electromagnetic interference shielding properties. AIP Adv 6. https://doi.org/10.1063/1.4953810

  120. Zhao B, Zhao C, Hamidinejad M et al (2018) Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. J Mater Chem C 6:10292–10300. https://doi.org/10.1039/c8tc03714k

    Article  CAS  Google Scholar 

  121. Jia LJ, Phule AD, Geng Y et al (2021) Microcellular conductive carbon black or graphene/PVDF composite foam with 3D conductive channel: a promising lightweight, heat-insulating, and EMI‐shielding material. Macromol Mater Eng 306. https://doi.org/10.1002/mame.202000759

  122. Wang H, Zheng K, Zhang X et al (2016) Segregated poly(vinylidene fluoride)/MWCNTs composites for high-performance electromagnetic interference shielding. Compos Part A-Appl Sci 90:606–613. https://doi.org/10.1016/j.compositesa.2016.08.030

    Article  CAS  Google Scholar 

  123. Soares BG, Pontes K, Marins JA et al (2015) Poly(vinylidene fluoride-co-hexafluoropropylene)/polyaniline blends assisted by phosphonium – based ionic liquid: dielectric properties and β-phase formation. Eur Polym J 73:65–74. https://doi.org/10.1016/j.eurpolymj.2015.10.003

    Article  CAS  Google Scholar 

  124. Li Y, Zhou B, Shen Y et al (2021) Scalable manufacturing of flexible, durable Ti3C2Tx MXene/Polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. Compos Part B-Eng 217. https://doi.org/10.1016/j.compositesb.2021.108902

  125. Wang J, Yang K, Wang H et al (2021) A new strategy for high-performance electromagnetic interference shielding by designing a layered double-percolated structure in PS/PVDF/MXene composites. Eur Polym J 151. https://doi.org/10.1016/j.eurpolymj.2021.110450

  126. Revathi V, Dinesh Kumar S, Subramanian V et al (2015) BMFO-PVDF electrospun fiber based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region. Eur Phys J-Appl Phys 72. https://doi.org/10.1051/epjap/2015150368

  127. Peymanfar R, Ghorbanian-Gezaforodi S, Selseleh-Zakerin E et al (2020) Tailoring La0.8Sr0.2MnO3/La/Sr nanocomposite using a novel complementary method as well as dissecting its microwave, shielding, optical, and magnetic characteristics. Ceram Int 46:20896–20904. https://doi.org/10.1016/j.ceramint.2020.05.139

    Article  CAS  Google Scholar 

  128. Kumaran R, Alagar M, Dinesh Kumar S et al (2015) Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thin films. Appl Phys Lett 107. https://doi.org/10.1063/1.4931125

  129. Bhingardive V, Kar GP, Bose S (2016) Lightweight, flexible and ultra-thin sandwich architectures for screening electromagnetic radiation. RSC Adv 6:70018–70024. https://doi.org/10.1039/c6ra14154d

    Article  CAS  Google Scholar 

  130. Arief I, Bhattacharjee Y, Prakash O et al (2019) Tunable CoNi microstructures in flexible multilayered polymer films can shield electromagnetic radiation. Compos Part B-Eng 177. https://doi.org/10.1016/j.compositesb.2019.107283

  131. Bhingardive V, Sharma M, Suwas S et al (2015) Polyvinylidene fluoride based lightweight and corrosion resistant electromagnetic shielding materials. RSC Adv 5:35909–35916. https://doi.org/10.1039/c5ra05625j

    Article  CAS  Google Scholar 

  132. Bhingardive V, Suwas S, Bose S (2015) New physical insights into the electromagnetic shielding efficiency in PVDF nanocomposites containing multiwall carbon nanotubes and magnetic nanoparticles. RSC Adv 5:79463–79472. https://doi.org/10.1039/c5ra13901e

    Article  CAS  Google Scholar 

  133. Menon AV, Madras G, Bose S (2017) Magnetic Alloy-MWNT heterostructure as efficient Electromagnetic Wave Suppressors in Soft Nanocomposites. ChemistrySelect 2:7831–7844. https://doi.org/10.1002/slct.201700986

    Article  CAS  Google Scholar 

  134. Li X, Zeng S et al (2018) Quick heat dissipation in absorption-dominated microwave shielding properties of flexible poly(vinylidene fluoride)/carbon Nanotube/Co composite films with anisotropy-shaped Co (flowers or chains). ACS Appl Mater Inter 10:4078940799. https://doi.org/10.1021/acsami.8b14733

    Article  CAS  Google Scholar 

  135. Wang H, Zheng K, Zhang X et al (2018) Separated poly(vinylidene fluoride)/carbon black composites containing magnetic carbonyl iron particles for efficient electromagnetic interference shielding. Mater Res Express 5. https://doi.org/10.1088/2053-1591/aae250

  136. Shayesteh Zeraati A, Mende Anjaneyalu A, Pawar SP et al (2020) Effect of secondary filler properties and geometry on the electrical, dielectric, and electromagnetic interference shielding properties of carbon nanotubes/polyvinylidene fluoride nanocomposites. Polym Eng Sci 61:959–970. https://doi.org/10.1002/pen.25591

    Article  CAS  Google Scholar 

  137. Vyas MK, Chandra A (2016) Ion-electron-conducting polymer composites: promising electromagnetic interference shielding material. ACS Appl Mater Inter 8:18450–18461. https://doi.org/10.1021/acsami.6b05313

    Article  CAS  Google Scholar 

  138. Zeng S, Li X, Li M et al (2019) Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon 155:34–43. https://doi.org/10.1016/j.carbon.2019.08.024

    Article  CAS  Google Scholar 

  139. Peymanfar R, Ahmadi A, Selseleh-Zakerin E et al (2021) Electromagnetic and optical characteristics of wrinkled Ni nanostructure coated on carbon microspheres. Chem Eng J 405. https://doi.org/10.1016/j.cej.2020.126985

    Article  Google Scholar 

  140. Zeynep Ertekin M, Seçmen, Ero M (2019) Electromagnetic interference shielding performance of ionic liquid modified carbon black and graphite in polyvinylidene fluoride at Ku-band. 2019 11th International Conference on Electrical and Electronics Engineering (ELECO) IEEE

  141. Cheng H, Pan Y, Chen Q et al (2021) Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4:505–513. https://doi.org/10.1007/s42114-021-00224-1

    Article  CAS  Google Scholar 

  142. Yang S, Yan D-X, Li Y et al (2021) Flexible poly(vinylidene fluoride)-mxene/silver nanowire electromagnetic shielding films with joule heating performance. Ind Eng Chem Res 60:9824–9832. https://doi.org/10.1021/acs.iecr.1c01632

    Article  CAS  Google Scholar 

  143. Song J, Yuan Q, Zhang H et al (2015) Elevated conductivity and electromagnetic interference shielding effectiveness of PVDF/PETG/carbon fiber composites through incorporating carbon black. J Polym Res 22. https://doi.org/10.1007/s10965-015-0798-z

  144. Zhao B, Zhao C, Li R et al (2017) Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl Mater Inter 9:20873–20844. https://doi.org/10.1021/acsami.7b04935

    Article  CAS  Google Scholar 

  145. Halder KK, Tomar M, Sachdev VK et al (2018) To study the effect of MWCNT incorporated into PVDF-Graphite composites for EMI shielding applications. Today: Proc 5:15348–15353. https://doi.org/10.1016/j.matpr.2018.05.016

  146. Arjmand M, Sadeghi S, Otero Navas I et al (2019) Carbon nanotube versus graphene nanoribbon: impact of nanofiller geometry on electromagnetic interference shielding of polyvinylidene fluoride nanocomposites. Polymers-Basel 11. https://doi.org/10.3390/polym11061064

  147. Mei X, Lu L, Xie Y et al (2019) An ultra-thin carbon-fabric/graphene/poly(vinylidene fluoride) film for enhanced electromagnetic interference shielding. Nanoscale 11:13587–13599. https://doi.org/10.1039/c9nr03603b

    Article  CAS  PubMed  Google Scholar 

  148. Leão A, Indrusiak T, Costa MF et al (2020) Exploring the potential use of clean scrap PVDF as matrix for conductive composites based on graphite, carbon black and hybrids: electromagnetic interference shielding effectiveness (EMI SE). J Polym Environ 28:2091–2100. https://doi.org/10.1007/s10924-020-01753-4

    Article  CAS  Google Scholar 

  149. Biswas S, Kar GP, Bose S (2015) Engineering nanostructured polymer blends with controlled nanoparticle location for excellent microwave absorption: a compartmentalized approach. Nanoscale 7:11334–11351. https://doi.org/10.1039/c5nr01785h

    Article  CAS  PubMed  Google Scholar 

  150. Biswas S, Kar GP, Bose S (2015) Microwave absorbers designed from PVDF/SAN blends containing multiwall carbon nanotubes anchored cobalt ferrite via a pyrene derivative. J Mater Chem A 3:12413–12426. https://doi.org/10.1039/c5ta02177d

    Article  CAS  Google Scholar 

  151. Kar GP, Biswas S, Bose S (2016) Tuning the microwave absorption through engineered nanostructures in co-continuous polymer blends. Mater Res Express 3. https://doi.org/10.1088/2053-1591/3/6/064002

  152. Kar GP, Biswas S, Rohini R et al (2015) Tailoring the dispersion of multiwall carbon nanotubes in co-continuous PVDF/ABS blends to design materials with enhanced electromagnetic interference shielding. J Mater Chem A 3:7974–7985. https://doi.org/10.1039/c5ta01183c

    Article  CAS  Google Scholar 

  153. Biswas S, Kar GP, Bose S (2015) Tailor-made distribution of nanoparticles in blend structure toward outstanding electromagnetic interference shielding. ACS Appl Mater Inter 7:25448–25463. https://doi.org/10.1021/acsami.5b08333

    Article  CAS  Google Scholar 

  154. Biswas S, Arief I, Panja SS et al (2017) Electromagnetic screening in soft conducting composite-containing ferrites: the key role of size and shape anisotropy. Mater Chem Front 1:2574–2589. https://doi.org/10.1039/c7qm00305f

    Article  CAS  Google Scholar 

  155. Biswas S, Panja SS, Bose S (2018) Physical insight into the mechanism of electromagnetic shielding in polymer nanocomposites containing multiwalled carbon nanotubes and inverse-spinel ferrites. J Phys Chem C 122:19425–19437. https://doi.org/10.1021/acs.jpcc.8b05867

    Article  CAS  Google Scholar 

  156. Biswas S, Bhattacharjee Y, Panja SS et al (2017) Rational design of multilayer ultrathin nano-architecture by coupling of soft conducting nanocomposite with ferrites and porous structures for screening electromagnetic radiation. ChemistrySelect 2:1094–1101. https://doi.org/10.1002/slct.201601713

    Article  CAS  Google Scholar 

  157. Sharma M, Singh D, Menon A et al (2018) Suppressing electromagnetic radiation by trapping ferrite nanoparticles and carbon nanotubes in hierarchical nanoporous structures designed by crystallization-induced phase separation. ChemistrySelect 3:1189–1201. https://doi.org/10.1002/slct.201702731

    Article  CAS  Google Scholar 

  158. Acharya S, Gopinath CS, Alegaonkar P et al (2018) Enhanced microwave absorption property of reduced graphene oxide (RGO)–strontium hexaferrite (SF)/poly (vinylidene) fluoride (PVDF). Diam Relat Mater 89:28–34. https://doi.org/10.1016/j.diamond.2018.07.024

    Article  CAS  Google Scholar 

  159. Acharya S, Alegaonkar P, Datar S (2019) Effect of formation of heterostructure of SrAl4Fe8O19/RGO/PVDF on the microwave absorption properties of the composite. Chem Eng J 374:144–154. https://doi.org/10.1016/j.cej.2019.05.078

    Article  CAS  Google Scholar 

  160. Acharya S, Datar S (2020) Wideband (8–18 GHz) microwave absorption dominated electromagnetic interference (EMI) shielding composite using copper aluminum ferrite and reduced graphene oxide in polymer matrix. J Appl Phys 128. https://doi.org/10.1063/5.0009186.ep

  161. Anand S, Pauline S (2020) Electromagnetic interference shielding properties of BaCo2Fe16O27 nanoplatelets and RGO reinforced PVDF polymer composite flexible films. Adv Mater Inter 8. https://doi.org/10.1002/admi.202001810

  162. Anand S, Pauline S, Prabagar CJ (2020) Zr doped barium hexaferrite nanoplatelets and RGO fillers embedded polyvinylidene fluoride composite films for electromagnetic interference shielding applications. Polym Test 86. https://doi.org/10.1016/j.polymertesting.2020.106504

  163. Cheng H, Wei S, Ji Y et al (2019) Synergetic effect of Fe3O4 nanoparticles and carbon on flexible poly (vinylidence fluoride) based films with higher heat dissipation to improve electromagnetic shielding. Compos Part A-Appl Sci 121:139–148. https://doi.org/10.1016/j.compositesa.2019.03.019

    Article  CAS  Google Scholar 

  164. Li L-y, Li S-l, Shao Y et al (2018) PVDF/PS/HDPE/MWCNTs/Fe3O4 nanocomposites: effective and lightweight electromagnetic interference shielding material through the synergetic effect of MWCNTs and Fe3O4 nanoparticles. Curr Appl Phys 18:388–396. https://doi.org/10.1016/j.cap.2018.01.014

    Article  Google Scholar 

  165. Zhao Y, Hou J, Bai Z et al (2020) Facile preparation of lightweight PE/PVDF/Fe3O4/CNTs nanocomposite foams with high conductivity for efficient electromagnetic interference shielding. Compos Part A-Appl Sci 139. https://doi.org/10.1016/j.compositesa.2020.106095

  166. Lalan V, Ganesanpotti S (2019) Broadband electromagnetic response and enhanced microwave absorption in carbon black and magnetic Fe3O4 nanoparticles reinforced polyvinylidene fluoride composites. J Electron Mater 49:1666–1676. https://doi.org/10.1007/s11664-019-07635-3

    Article  CAS  Google Scholar 

  167. Ahmed I, Jan R, Khan AN et al (2020) Graphene-ferrites interaction for enhanced EMI shielding effectiveness of hybrid polymer composites. Mater Res Express 7:1. https://doi.org/10.1088/2053-1591/ab62ed

    Article  CAS  Google Scholar 

  168. Ramazanov MA, Shirinova HA, Hajiyeva FV et al (2020) New polymeric three-phase nanocomposites based on polyvinylidene fluoride, magnetite nanoparticles and multi-walled carbon nanotubes: production, structure and properties. J Inorg Organomet P 30:4783–4791. https://doi.org/10.1007/s10904-020-01648-w

    Article  CAS  Google Scholar 

  169. Darwish MA, Morchenko AT, Abosheiasha HF et al (2021) Impact of the exfoliated graphite on magnetic and microwave properties of the hexaferrite-based composites. J Alloy Compd 878. https://doi.org/10.1016/j.ceramint.2020.09.108

  170. Lalan V, Puthiyedath Narayanan A, Surendran KP et al (2019) Room-temperature ferromagnetic Sr3YCo4O10+delta and carbon black-reinforced polyvinylidenefluoride composites toward high-performance electromagnetic interference shielding. ACS Omega 4:8196–8206. https://doi.org/10.1021/acsomega.9b00454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Muzaffar A, Ahamed MB, Deshmukh K et al (2018) Enhanced electromagnetic absorption in NiO and BaTiO3 based polyvinylidenefluoride nanocomposites. Mater Lett 218:217–220. https://doi.org/10.1016/j.matlet.2018.02.029

    Article  CAS  Google Scholar 

  172. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res Lett 6:137. https://doi.org/10.1186/1556-276X-6-137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Guo AP, Zhang XJ, Wang SW et al (2016) Excellent microwave absorption and electromagnetic interference shielding based on reduced graphene oxide@MoS2 /poly(vinylidene fluoride) composites. ChemPlusChem 81:1305–1311. https://doi.org/10.1002/cplu.201600370

    Article  CAS  PubMed  Google Scholar 

  174. Biswas S, Dutta S, Panja SS et al (2017) Hollow semiconductor nanospheres-anchored graphene oxide sheets for effective microwave absorption. ChemistrySelect 2:10840–10847. https://doi.org/10.1002/slct.201702190

    Article  CAS  Google Scholar 

  175. Guo A-P, Zhang X-J, Qu J-K et al (2017) Improved microwave absorption and electromagnetic interference shielding properties based on graphene–barium titanate and polyvinylidene fluoride with varying content. Mater Chem Fron 1:2519–2526. https://doi.org/10.1039/c7qm00204a

    Article  CAS  Google Scholar 

  176. Kar E, Bose N, Dutta B et al (2018) MWCNT@SiO2 heterogeneous nanofiller-based polymer composites: a single key to the high-performance piezoelectric nanogenerator and X-band microwave shield. ACS Appl Nano Mater 1:4005–4018. https://doi.org/10.1021/acsanm.8b00770

    Article  CAS  Google Scholar 

  177. Raagulan K, Braveenth R, Jang HJ et al (2018) Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric. Materials-Basel 11. https://doi.org/10.3390/ma11101803

  178. Shayesteh Zeraati A, Sundararaj U (2020) Carbon nanotube/ZnO nanowire/polyvinylidene fluoride hybrid nanocomposites for enhanced electromagnetic interference shielding. Can J Chem Eng 98:1036–1046. https://doi.org/10.1002/cjce.23717

    Article  CAS  Google Scholar 

  179. Schiefferdecker VdM, Barra GMO, Ramôa SDAS et al (2019) Comparative study of the structure and properties of poly(vinylidene fluoride)/montmorillonite-polypyrrole nanocomposites prepared by electrospinning and solution casting. Front Mater 6. https://doi.org/10.3389/fmats.2019.00193

  180. Xu G, Wang B, Song S et al (2021) High-performance and robust dual-function electrochromic device for dynamic thermal regulation and electromagnetic interference shielding. Chem Eng J 422. https://doi.org/10.1016/j.cej.2021.130064

  181. Gao S, Yang S-H, Wang H-Y et al (2020) Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. Carbon 162:438–444. https://doi.org/10.1016/j.carbon.2020.02.031

    Article  CAS  Google Scholar 

  182. Chakraborty T, Sharma S, Ghosh A et al (2020) Electromagnetic shielding effectiveness of X-Type hexaferrite-C3N4 binary nanofiller-incorporated poly(vinylidene fluoride) multiphase composites. J Phys Chem C 124:19396–19405. https://doi.org/10.1021/acs.jpcc.0c05666

    Article  CAS  Google Scholar 

  183. Chakraborty T, Sharma S, Debnath T et al (2021) Fabrication of heterostructure composites of Ni-Zn-Cu-Ferrite-C3N4-Poly(vinylidene fluoride) films for the enhancement of electromagnetic interference shielding effectiveness. Chem Eng J 420. https://doi.org/10.1016/j.cej.2020.127683

  184. Sharma M, Singh MP, Srivastava C et al (2014) Poly(vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations. ACS Appl Mater Inter 6:21151–21160. https://doi.org/10.1021/am506042a

    Article  CAS  Google Scholar 

  185. Srivastava RK, Xavier P, Gupta SN et al (2016) Excellent electromagnetic interference shielding by graphene- MnFe2O4-multiwalled carbon nanotube hybrids at very low weight% in polymer matrix. ChemistrySelect 1:5995–6003. https://doi.org/10.1002/slct.201601302

    Article  CAS  Google Scholar 

  186. Biswas S, Kar GP, Bose S (2015) Attenuating microwave radiation by absorption through controlled nanoparticle localization in PC/PVDF blends. Phys Chem Chem Phys 17:27698–27712. https://doi.org/10.1039/c5cp05189d

    Article  CAS  PubMed  Google Scholar 

  187. Biswas S, Arief I, Panja SS et al (2017) Absorption-dominated electromagnetic wave suppressor derived from ferrite-doped cross-linked graphene framework and conducting carbon. ACS Appl Mater Interr 9:3030–3039. https://doi.org/10.1021/acsami.6b14853

    Article  CAS  Google Scholar 

  188. Biswas S, Bhattacharjee Y, Panja SS et al (2017) Graphene oxide co-doped with dielectric and magnetic phases as an electromagnetic wave suppressor. Mater Chem Front 1:1229–1244. https://doi.org/10.1039/c6qm00335d

    Article  CAS  Google Scholar 

  189. Bhattacharjee Y, Bapari S, Bose S (2020) Mechanically robust, UV screener core-double-shell nanostructures provide enhanced shielding for EM radiations over wide angle of incidence. Nanoscale 12:15775–15790. https://doi.org/10.1039/d0nr02654a

    Article  CAS  PubMed  Google Scholar 

  190. Rengaswamy K, Sakthivel DK, Muthukaruppan A et al (2018) Electromagnetic interference (EMI) shielding performance of lightweight metal decorated carbon nanostructures dispersed in flexible polyvinylidene fluoride films. New J Chem 42:12945–12953. https://doi.org/10.1039/c8nj02460j

    Article  CAS  Google Scholar 

  191. Sushmita K, Formanek P, Fischer D et al (2021) Ultrathin structures derived from interfacially modified polymeric nanocomposites to curb electromagnetic pollution. Nanoscale Adv 3:2632–2648. https://doi.org/10.1039/d0na01071e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhao B, Zeng S, Li X et al (2020) Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J Mater Chem C 8:500–509. https://doi.org/10.1039/c9tc05462f

    Article  CAS  Google Scholar 

  193. Harish Kumar A, Ahamed MB, Deshmukh K et al (2021) Morphology, dielectric and EMI shielding characteristics of graphene nanoplatelets, montmorillonite nanoclay and titanium dioxide nanoparticles reinforced polyvinylidene fluoride nanocomposites. J Inorg Organomet P 31:2003–2016. https://doi.org/10.1007/s10904-020-01869-z

    Article  CAS  Google Scholar 

  194. Rengaswamy K, Asapu VK, Muthukaruppan A et al (2021) Enhanced shielding of electromagnetic radiations with flexible, light-weight, and conductive Ag‐Cu/MWCNT/rGO architected PVDF nanocomposite films. Polym Adv Technol 32:3759–3769. https://doi.org/10.1002/pat.5395

    Article  CAS  Google Scholar 

  195. Cao M-S, Cai Y-Z, He P et al (2019) 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem Eng J 359:1265–1302. https://doi.org/10.1016/j.cej.2018.11.051

    Article  CAS  Google Scholar 

  196. Gao L, Li C, Huang W et al (2020) MXene/Polymer membranes: synthesis, Properties, and emerging applications. Chem Mater 32:1703–1747. https://doi.org/10.1021/acs.chemmater.9b04408

    Article  CAS  Google Scholar 

  197. Liang C, Qiu H, Song P et al (2020) Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci Bull 65:616–622. https://doi.org/10.1016/j.scib.2020.02.009

    Article  CAS  Google Scholar 

  198. Jia X, Shen B, Zhang L et al (2021) Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 173:932–940. https://doi.org/10.1016/j.carbon.2020.11.036

    Article  CAS  Google Scholar 

  199. Song P, Liu B, Qiu H et al (2021) MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos Commun 24. https://doi.org/10.1016/j.coco.2021.100653

  200. Sun R, Zhang H-B, Liu J et al (2017) Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv Funct Mater 27. https://doi.org/10.1002/adfm.201702807

  201. He L, Tjong SC (2015) Facile synthesis of silver-decorated reduced graphene oxide as a hybrid filler material for electrically conductive polymer composites. RSC Adv 5:15070–15076. https://doi.org/10.1039/c5ra00257e

    Article  CAS  Google Scholar 

  202. Zhang HB, Yan Q, Zheng WG et al (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Inter 3:918–924. https://doi.org/10.1021/am200021v

    Article  CAS  Google Scholar 

  203. Shen WZ, Zheng W, Tao M et al (2014) Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater 24:4542–4548. https://doi.org/10.1002/adfm.201400079

    Article  CAS  Google Scholar 

  204. Zeng Z, Jin H, Chen M et al (2016) Ligtweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv Funct Mater 26:303–310. https://doi.org/10.1002/adfm.201503579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Planning Project of Guizhou Province ([2020]4Y021, [2021]9), Science and Technology Planning Project of Guiyang ([2020]-18-9), Science and Technology Planning Project of Baiyun district of Guiyang ([2020]30), Science and Technology Planning Project of Guiyang ([2021]-1-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingmo Hu or Shuhao Qin.

Ethics declarations

Competing interests

The authors declare no potential conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 464 KB )

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Q., Hu, Y., Guo, S. et al. PVDF-based composites for electromagnetic shielding application: a review. J Polym Res 30, 130 (2023). https://doi.org/10.1007/s10965-023-03506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03506-y

Keywords

Navigation