Skip to main content
Log in

A feasible method of silica dispersion by introducing a pre-vulcanized gel in the natural rubber matrix

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Targeting towards the challenge of global tyre industries of producing green and sustainable tyre, the idea of introducing pre-vulcanized natural rubber (NR) gel into highly silica loaded NR composite may prevail in upcoming days. The high crosslinked pre-vulcanized NR gel was prepared by a sulfur curing system from NR latex. Incorporation of the gel in dry and latex stage mixing assisted in the breaking of agglomerated particles of silica into finer aggregates resulted homogeneous dispersion of silica filler evident from the morphological analysis (FESEM and AFM). Consequently, > 10% reduction in rolling resistance (RR), 12-units reduction in heat build-up (HBU), and > 15% reduction in RR, 24-units reduction in HBU were evident in dry and latex mixing composites, respectively. Furthermore, the drop in viscosity and diminution in die swell of the NR composites indicates a clear improvement in the processing behavior of the gel embedded compounds. Thus, in accordance with the entire performance of the compounds, it can be highly recommended as a heavy vehicle tyre tread compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be available on special request.

References

  1. Sarkawi SS, Dierkes WK, Noordermeer JWM (2014) Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM Network Visualization. Eur Polym J 54:. https://doi.org/10.1016/j.eurpolymj.2014.02.015

  2. Sarkawi SS, Dierkes WK, Noordermeer JWM (2013) The influence of non-rubber constituents on performance of silica reinforced natural rubber compounds. Eur Polym J 49:3199–3209. https://doi.org/10.1016/J.EURPOLYMJ.2013.06.022

    Article  CAS  Google Scholar 

  3. Wang Y, Liao L, Zhong J et al (2016) The behavior of natural rubber–epoxidized natural rubber–silica composites based on wet masterbatch technique. J Appl Polym Sci 133:43571. https://doi.org/10.1002/APP.43571

    Article  Google Scholar 

  4. Sattayanurak S, Sahakaro K, Kaewsakul W et al (2020) Synergistic effect by high specific surface area carbon black as secondary filler in silica reinforced natural rubber tire tread compounds. Polym Test 81:106173. https://doi.org/10.1016/J.POLYMERTESTING.2019.106173

  5. Murakami K, Ilo S, Ikeda Y et al (2003) Effect of silane-coupling agent on natural rubber filled with silica generated in situ. J Mater Sci. https://doi.org/10.1023/A:1022908211748

    Article  Google Scholar 

  6. Ganguly D, Bera A, Hore R et al (2022) Coining the attributes of nano to micro dual hybrid silica-ceramic waste filler based green HNBR composites for triple percolation: Mechanical properties, thermal, and electrical conductivity. Chem Eng J Adv 11:100338. https://doi.org/10.1016/j.ceja.2022.100338

  7. Ganguly D, Khanra S, Goswami D et al (2020) Controlling the mechanoadaptive properties of hydrogenated nitrile rubber by the incorporation of cementious based industrial waste for downhole application. Polym Compos 41:4397–4410. https://doi.org/10.1002/PC.25721

    Article  CAS  Google Scholar 

  8. Bera A, Ganguly D, Ghorai SK et al (2022) Treatment of natural rubber with bio-based components: A green endeavor to diminish the silica agglomeration for tyre tread application. Chem Eng J Adv 100349. https://doi.org/10.1016/J.CEJA.2022.100349

  9. Bera A, Goswami M, Ganguly D et al (2023) The variation of structure and property of sorbitol-treated NR vulcanizates with increasing the silica loading. J Mater Sci 58:996–1011. https://doi.org/10.1007/S10853-022-08092-W/FIGURES/12

    Article  CAS  Google Scholar 

  10. Bera A, Ganguly D, Rath JP et al (2023) The effect of bio-based ingredients in isoprene rubber: A biomimetic approach to improve the dispersion of silica. Mater Chem Phys 295:127151. https://doi.org/10.1016/J.MATCHEMPHYS.2022.127151

  11. Bera A, Manna B, Ganguly D et al (2022) Pretreatment of Hevea Latex by Sorbitol: Improving the Efficacy of Silica Dispersion by a Biomimetic Approach. ACS Appl Polym Mater 5:451. https://doi.org/10.1021/ACSAPM.2C01588/ASSET/IMAGES/LARGE/AP2C01588_0010.JPEG

    Article  Google Scholar 

  12. Mitra S, Chattopadhyay S, Bharadwaj YK et al (2008) Effect of electron beam-cross-linked gels on the rheological properties of raw natural rubber. Radiat Phys Chem 77:630–642. https://doi.org/10.1016/J.RADPHYSCHEM.2007.10.006

    Article  CAS  Google Scholar 

  13. Jayasuriya MM, Makuuchi K, Yoshi F (2001) Radiation vulcanization of natural rubber latex using TMPTMA and PEA. Eur Polym J 37:93–98. https://doi.org/10.1016/S0014-3057(00)00091-4

    Article  CAS  Google Scholar 

  14. Chirinos H, Yoshii F, Makuuchi K, Lugao A (2003) Radiation vulcanization of natural rubber latex using 250 keV electron beam machine. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 208:256–259. https://doi.org/10.1016/S0168-583X(03)01114-5

    Article  CAS  Google Scholar 

  15. Nakajima N, Collins EA (2000) Flow Behavior of Raw Elastomers Containing Crosslinked Particles. J Rheol (N Y N Y) 22:547. https://doi.org/10.1122/1.549488

    Article  Google Scholar 

  16. Montes SA, Ponce-Velez MA (1983) Effect of Gel and Nonrubber Constituents on the Extrusion Properties of Guayule Rubber. Rubber Chem Technol 56:1–11. https://doi.org/10.5254/1.3538112

    Article  CAS  Google Scholar 

  17. Campbell DS, Fuller KNG (1984) Factors Influencing the Mechanical Behavior of Raw Unfilled Natural Rubber. Rubber Chem Technol 57:104–117. https://doi.org/10.5254/1.3535987

    Article  CAS  Google Scholar 

  18. Bhowmick AK, Cho J, MacArthur A, McIntyre D (1986) Influence of gel and molecular weight on the properties of natural rubber. Polymer (Guildf) 27:1889–1894. https://doi.org/10.1016/0032-3861(86)90177-1

    Article  CAS  Google Scholar 

  19. Kawahara S, Isono Y, Sakdapipanich JT et al (2002) Effect of Gel on the Green Strength of Natural Rubber. Rubber Chem Technol 75:739–746. https://doi.org/10.5254/1.3544999

    Article  CAS  Google Scholar 

  20. Goswami D, Anand KS, Jana PP et al (2020) Synthesis of a robust multifunctional composite with concurrent magnetocaloric effect and enhanced energy absorption capabilities through a tailored processing route. Mater Des 187:108399. https://doi.org/10.1016/J.MATDES.2019.108399

  21. Goswami D, Chattopadhyay S, Das J (2023) Effect of the post annealing cooling rate on the martensitic transformation and the magnetocaloric effect in Ni-Mn-Sn ribbons. Mater Res Bull 160:112129. https://doi.org/10.1016/J.MATERRESBULL.2022.112129

  22. Prasertsri S, Rattanasom N (2011) Mechanical and damping properties of silica/natural rubber composites prepared from latex system. Polym Test 30:515–526. https://doi.org/10.1016/j.polymertesting.2011.04.001

    Article  CAS  Google Scholar 

  23. Prasertsri S, Rattanasom N (2012) Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: Mechanical and dynamic properties. Polym Test 31:593–605. https://doi.org/10.1016/J.POLYMERTESTING.2012.03.003

    Article  CAS  Google Scholar 

  24. Hrachová J, Komadel P, Chodák I (2008) Effect of montmorillonite modification on mechanical properties of vulcanized natural rubber composites. J Mater Sci 43:2012–2017. https://doi.org/10.1007/S10853-007-2438-4/FIGURES/5

    Article  Google Scholar 

  25. Choi SS (2002) Improvement of properties of silica-filled natural rubber compounds using polychloroprene. J Appl Polym Sci 83:2609–2616. https://doi.org/10.1002/APP.10201

    Article  CAS  Google Scholar 

  26. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26:369–377. https://doi.org/10.1016/j.polymertesting.2006.12.003

    Article  CAS  Google Scholar 

  27. Lee JY, Park N, Lim S et al (2016) Influence of the silanes on the crosslink density and crosslink structure of silica-filled solution styrene butadiene rubber compounds. 24:711–727. https://doi.org/10.1080/09276440.2017.1267524

  28. Donnet JB (1998) Black and White Fillers and Tire Compound. Rubber Chem Technol 71:323–341. https://doi.org/10.5254/1.3538488

    Article  CAS  Google Scholar 

  29. Edwards DC (1990) (1990) Polymer-filler interactions in rubber reinforcement. J Mater Sci 2510(25):4175–4185. https://doi.org/10.1007/BF00581070

    Article  Google Scholar 

  30. Takino H, Nakayama R, Yamada Y et al (1997) Viscoelastic Properties of Elastomers and Tire Wet Skid Resistance. Rubber Chem Technol 70:584–594. https://doi.org/10.5254/1.3538445

    Article  CAS  Google Scholar 

  31. Li Y, Han B, Wen S et al (2014) Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites. Compos Part A Appl Sci Manuf 62:52–59. https://doi.org/10.1016/J.COMPOSITESA.2014.03.007

    Article  CAS  Google Scholar 

  32. Murthy VM, Bhowmick AK (1982) De SK (1982) Scanning electron microscopy studies of failure surfaces of short glass fibre — rubber composites. J Mater Sci 173(17):709–716. https://doi.org/10.1007/BF00540367

    Article  Google Scholar 

  33. Bandyopadhyay A, De Sarkar M, Bhowmick AK (2005) Rheological Behavior of Hybrid Rubber Nanocomposites. Rubber Chem Technol 78:806–826. https://doi.org/10.5254/1.3547915

    Article  CAS  Google Scholar 

  34. Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687. https://doi.org/10.1016/S0079-6700(01)00040-5

    Article  CAS  Google Scholar 

  35. Mills NJ (1971) The rheology of filled polymers. J Appl Polym Sci 15:2791–2805. https://doi.org/10.1002/APP.1971.070151116

    Article  CAS  Google Scholar 

  36. Goswami D, Anand KS, Chattopadhyay S, Das J (2022) Exchange bias effects and a large magnetocaloric effect arising out of the second-order transition in suction cast Ni50Mn36Sn14. J Mater Res 37:4071–4083. https://doi.org/10.1557/S43578-022-00765-1/METRICS

    Article  CAS  Google Scholar 

  37. Johns J, Rao V (2009) Characterization of Natural Rubber Latex/Chitosan Blends. 13:280–291. https://doi.org/10.1080/10236660802190104

  38. Khanra S, Kumar A, Ghorai SK et al (2020) Influence of partial substitution of carbon black with silica on mechanical, thermal, and aging properties of super specialty elastomer based composites. Polym Compos 41:4379–4396. https://doi.org/10.1002/PC.25720

    Article  CAS  Google Scholar 

  39. Khanra S, Ganguly D, Ghorai SK et al (2020) The synergistic effect of fluorosilicone and silica towards the compatibilization of silicone rubber and fluoroelastomer based high performance blend. J Polym Res 27:1–17. https://doi.org/10.1007/S10965-020-02062-Z/FIGURES/15

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Indian Institute of Technology Kharagpur and Apollo Tyres Pvt. Ltd, Chennai for their financial support and all kinds of facilities. The authors are also thankful to the Central Research Facility of IIT Kharagpur for carrying out the different characterizations of the samples. The author also likes to thank Mr. Rajesh De, Junior Technician/Junior Laboratory Assistant, Rubber Technology Centre, IIT Kharagpur.

Author information

Authors and Affiliations

Authors

Contributions

Abhijit Bera: Conceptualization, Writing—Original draft preparation; Writing—Reviewing and Editing, Debabrata Ganguly: Writing- Reviewing and Editing, Methodology, Roumita Hore: Writing- Reviewing and Editing, Methodology, Jyoti Prakash Rath: Project administration, S. Ramakrishnan: Project administration, Job Kuriakose: Project administration, S. K. P. Amarnath: Project administration, Writing—Reviewing and Editing, Santanu Chattopadhyay: Supervision.

Corresponding author

Correspondence to Santanu Chattopadhyay.

Ethics declarations

Ethical approval

No testing on human or animal was carried out for this work therefore ethical approval is not applicable for this study.

Conflicts of interest

Authors declare that there are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4031 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, A., Ganguly, D., Hore, R. et al. A feasible method of silica dispersion by introducing a pre-vulcanized gel in the natural rubber matrix. J Polym Res 30, 124 (2023). https://doi.org/10.1007/s10965-023-03501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03501-3

Keywords

Navigation