Skip to main content
Log in

Surface modification of a polypropylene separator by an electrospun coating layer of Poly(vinyl alchohol)-SiO2 for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Nowadays lithium-ion batteries are widely used in many electrical equipments. Separators are a key component in lithium-ion batteries (LIBs) and perform an important role in the performance and safety of batteries. Weak wettability and termal resistance of polyolefine separators cause to limit their efficiency in LIBs. In the current research, the surface of a commerical PP separator was modified by polyvinyl alcohol (PVA)-SiO2 coating layer using the electrospining method. Gurley test was conducted to obtain the permability of the designed separators. Surface tension, viscosity and electrical conductivity of the electrospining solution were also measured. The electrospining parameters (concentration of PVA and SiO2, voltage and time) were optimized via an experimental design. The obtained results showed that, the shrinkage was minimized for the solution of 7.5wt%PVA-15wt%SiO2 which was fabricated at 16.7 kV for 1.5 h. It was revealed that addition of SiO2 nanoparticles as well as incraesing the concentration of the electrospining solution led to increase in viscosity and surface tension of separators. Si–O-Si absorbtion peaks were appeared in FTIR spectrum of PVA-SiO2 fibers compared to PVA fibers. Addition of 20 wt% SiO2 nanoparticles to 12 wt% PVA solution increased the elecrical conductivity from 712 μm to 725 μm. The discharge rate capability results showed that the optimized coated separator had the ability to deliver 61% of initial capacity while the pristine separator delivered 41%, at the same C-rate. Finally the optimized coated separator exhibited the capacities retention of 93% with respect to 87% for pristine separator after 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Steel Z, Bateman Steel CR (2011) Psychology and forced migrants. IAAP Handb Appl Psychol 684–699. https://doi.org/10.1021/am406052u

  2. Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. Power Sources 237:229–242. https://doi.org/10.1016/j.jpowsour.2013.03.024

    Article  CAS  Google Scholar 

  3. Whittingham MS (2004) Lithium Batteries and Cathode Materials. Chem Rev. https://doi.org/10.1021/cr020731c

    Article  PubMed  Google Scholar 

  4. Wu YP, Rahm E, Holze R (2003) Carbon anode materials for lithium ion batteries. J Power Sources 114:228–236

    Article  CAS  Google Scholar 

  5. Yuan X, Liu H, Zhang J (2012) Lithium-ion batteries: Advanced materials and technologies. CRC Press, Boca Raton

    Google Scholar 

  6. Hayner CM, Zhao X, Kung HH (2012) Materials for Rechargeable Lithium-Ion Batteries. Annu Rev Chem Biomol Eng. https://doi.org/10.1146/annurev-chembioeng-062011-081024

    Article  PubMed  Google Scholar 

  7. Arora P, Zhang ZJ (2004) Battery separators. Chem Rev 104(10):4419–4462. https://doi.org/10.1021/cr020738u

    Article  CAS  PubMed  Google Scholar 

  8. Sohn J, Im J, Shin J (2012) PVDF-HFP / PMMA-coated PE separator for lithium ion battery. J Solid State Electrochem 551–556. https://doi.org/10.1007/s10008-011-1379-7

  9. Ihm D, Noh J, Kim J (2002) Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery. J Power Sources 109:388–393

    Article  CAS  Google Scholar 

  10. Moghim MH, Nahvibayani A, Eqra R (2022) Mechanical properties of heat-treated polypropylene separators for Lithium-ion batteries. Polym Eng Sci 62:3049–3058. https://doi.org/10.1002/pen.26084

    Article  CAS  Google Scholar 

  11. Min Y, Kim J, Choi N et al (2005) Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries. J Power Source 139:235–241. https://doi.org/10.1016/j.jpowsour.2004.06.055

    Article  CAS  Google Scholar 

  12. Lee YM, Lee JA, Kim J, Choi N, Seol W, Park J (2005) Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries. J Power Sources 139(1):235–241. https://doi.org/10.1016/j.jpowsour.2004.06.055

    Article  CAS  Google Scholar 

  13. Li X, Liu K, Yan Y et al (2022) Thermostable and nonflammable polyimide/zirconia compound separator for lithium-ion batteries with superior electrochemical and safe properties. J Colloid Interface Sci 625:936–945. https://doi.org/10.1016/J.JCIS.2022.06.096

    Article  CAS  PubMed  Google Scholar 

  14. Yu L, Jin Y, Lin YS (2016) Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: Effects of high melting point organic binder. RSC Adv 6:40002–40009. https://doi.org/10.1039/c6ra04522g

    Article  CAS  Google Scholar 

  15. Feng G, Li Z, Mi L et al (2018) Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J Power Sources 376:177–183. https://doi.org/10.1016/J.JPOWSOUR.2017.11.086

    Article  CAS  Google Scholar 

  16. Lee H, Alcoutlabi M, Watson JV et al (2013) Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries. J Appl Polym Sci 1939–1951. https://doi.org/10.1002/app.38894

  17. Gurauskis J et al. (2012) Processing of thin film ceramic membranes for oxygen separation. J Eur Ceram Soc 32(3)649–655. Available at: https://doi.org/10.1016/j.jeurceramsoc.2011.10.009

  18. Ding B, Kim HY, Lee SC, Shao CL, Lee DR, Park SJ, Kwag GB, Choi KJ (2002) Polym Sci Polym Phys 40:1261

  19. Kim SJ, Park SJ, Kim SI (2003) React Funct Polym 55:53

    Article  CAS  Google Scholar 

  20. Jeong HS, Lee SY (2011) Closely packed SiO2 nanoparticles/poly (vinylidene fluoride-hexafluoropropylene) layers-coated polyethy- lene separators for lithium-ion batteries. J Power Sources 196(16):6716–6722

    Article  CAS  Google Scholar 

  21. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 89. https://doi.org/10.1088/0957-4484/17/14/R01

  22. Yazdanpanah M, Khanmohammadi M, Mehdinavaz R (2014) Optimization of electrospinning process of poly (vinyl alcohol) via response surface methodology (RSM) based on the central composite design. Curr Chem Lett 3:175–182. https://doi.org/10.5267/j.ccl.2014.5.001

    Article  CAS  Google Scholar 

  23. Fathi HK, Moghadam MB, Taremi M, Rahmani M (2011) Robust parameter design in optimization of textile systems using response surface and dual response surface methodologies. World Appl Sci J 14:973–979

    Google Scholar 

  24. Choi H, Lee B-S (2022) Pilot scale hybrid organic/inorganic coatings on a polyolefin separator to enhance dimensional stability for thermally stable long-life rechargeable batteries. Polymers (Basel) 14:4474. https://doi.org/10.3390/polym14214474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parsaei S, Zebarjad SM, Moghim MH (2022) Optimizing the structural properties of electrospun polyimide membranes by response surface method. High Perform Polym 0:1–13. https://doi.org/10.1177/09540083221107823

  26. Zhao S, Zhou Q, Long YZ et al (2013) Nanofibrous patterns by direct electrospinning of nanofibers onto topographically structured non-conductive substrates. Nanoscale 5:4993–5000. https://doi.org/10.1039/c3nr00676j

    Article  CAS  PubMed  Google Scholar 

  27. Kumar P (2012) Effect of collector on electrospinning to fabricate aligned nanofiber. BT thesis, National Institute of Technology, Rourkela

  28. Bhardwaj N, Kundu SC (2010) Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  29. Pillay V, Dott C, Choonara YE et al (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater

  30. Macossay J, Marruffo A, Rincon R et al (2007) Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly (methyl methacrylate). Polym Adv Technol 18:180–183. https://doi.org/10.1002/pat

    Article  CAS  Google Scholar 

  31. Bashur CA, Dahlgren LA, Goldstein AS (2006) Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly (D, L -lactic- co -glycolic acid) meshes. Biomaterials 27:5681–5688. https://doi.org/10.1016/j.biomaterials.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  32. Pirsalami S, Zebarjad SM, Daneshmanesh H (2016) Evaluation and optimization of electrospun polyvinyl alcohol fibers via taguchi methodology. Int Polym Proc 31(4):503–507

    Article  Google Scholar 

  33. Shi J, Xia Y, Yuan Z, et al (2015) Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Sci Rep 1–9. https://doi.org/10.1038/srep08255

  34. Fujino Y, Tadokoro Y (1982) Polyelectrolyte behavior of poly (vinyl alcohol). Polym J 14:423–426

    Article  Google Scholar 

  35. Zhenyu L, Wang C (2013) Effects of working parameters on electrospinning. In One-dimensional nanostructures, pp. 15–28. Springer, Berlin, Heidelberg

  36. Karakaş H (2015) Electrospinning of nanofibers and there applications. Istanbul Technical University, Textile Technologies and Design Faculty

    Google Scholar 

  37. Uddin MJ, Alaboina PK, Zhang L, Cho SJ (2017) A low-cost, environment-friendly lignin-polyvinyl alcohol nanofiber separator using a water-based method for safer and faster lithium-ion batteries. Mater Sci Eng B Solid-State Mater Adv Technol 223:84–90. https://doi.org/10.1016/j.mseb.2017.05.004

    Article  CAS  Google Scholar 

  38. Zeytuncu B, Akman S, Yucel O, Kahraman M (2014) Preparation and characterization of UV-Cured Hybrid Polyvinyl Alcohol Nanofiber Membranes by Electrospinning 2. Mater Res 17:565–569

    Article  Google Scholar 

  39. Ikeda H, Fujino S, Kajiwara T (2011) Preparation of SiO 2 – PVA nanocomposite and monolithic transparent silica glass by sintering. J Ceram Soc Japan 65–69

  40. Jacobs V, Anandjiwala RD, Maaza M (2010) The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J Appl Polym Sci 115(5):3130–3136

    Article  CAS  Google Scholar 

  41. Zhang C, Yuan X (2005) European Polymer Study on morphology of electrospun poly (vinyl alcohol) mats. 41:423–432. https://doi.org/10.1016/j.eurpolymj.2004.10.027

  42. Lee JS, Choi KH, Do GH et al (2004) Role of molecular weight of Atactic Poly (vinyl alcohol) (PVA) in the Structure and Properties of PVA Nanofabric Prepared by Electrospinning. J Appl Polym Sci. https://doi.org/10.1002/app.20602

    Article  Google Scholar 

  43. Song W, Markel DC, Yu X, Ren W (2017) Corona discharge: a novel approach to fabricate three-dimensional electrospun nanofibers. ACS Biomater Sci Eng 1146–1153. https://doi.org/10.1021/acsbiomaterials.7b00061

  44. Supaphol P, Chuangchote S (2008) On the electrospinning of Poly (vinyl alcohol) Nanofiber Mats: A revisit. J Appl Polym Sci 108:969–978. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  45. Xiao W, Zhao L, Gong Y et al (2015) Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries. J Memb Sci 487:221–228. https://doi.org/10.1016/j.memsci.2015.04.004

    Article  CAS  Google Scholar 

  46. Min K, Gui YH, Yoon KJ, Park JH (2010) Preparation of a trilayer separator and its application to lithium-ion batteries. J Power Sources 195(24):8302–8305

    Article  Google Scholar 

  47. Nomura K, Terwilliger P (2019) Self-dual Leonard pairs preparation and performance of polypropylene separator modified. Spec Matrices 7:470–476

    Google Scholar 

  48. Yanilmaz M (2019) Evaluation of electrospun PVA / SiO 2 nanofiber separator membranes for lithium-ion batteries. J Text Inst 0:1–6. https://doi.org/10.1080/00405000.2019.1642070

  49. Jeon H, Yeon D, Lee T et al (2016) A water-based Al 2 O 3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J Power Sources 315:161–168. https://doi.org/10.1016/j.jpowsour.2016.03.037

    Article  CAS  Google Scholar 

  50. Chen W, Shi L, Wang Z et al (2016) Porous cellulose diacetate-SiO 2 composite coating on polyethylene separator for high-performance lithium-ion battery. Carbohydr Polym 147:517–524. https://doi.org/10.1016/j.carbpol.2016.04.046

    Article  CAS  PubMed  Google Scholar 

  51. Xia Y, Li J, Wang H et al (2018) Synthesis and electrochemical performance of poly ( vinylidene fluoride ) / SiO 2 hybrid membrane for lithium-ion batteries. J Solid State Electrochem 23:519–527

    Article  Google Scholar 

  52. Zhao Q, Wang X, Liu J et al (2015) Electrochimica Acta Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors. Electrochim Acta 154:110–118. https://doi.org/10.1016/j.electacta.2014.12.052

    Article  CAS  Google Scholar 

  53. Nishikawa R, Aridome N, Ojima N, Yamaguchi M (2020) Structure and properties of fiber-reinforced polypropylene prepared by direct incorporation of aqueous solution of poly(vinyl alcohol). Polymer (Guildf) 199:122566. https://doi.org/10.1016/j.polymer.2020.122566

  54. Moghim MH, Nahvi Bayani A, Eqra R (2020) Strain-rate-dependent mechanical properties of polypropylene separator for lithium-ion batteries. Polym Int 69:545–551. https://doi.org/10.1002/pi.5986

    Article  CAS  Google Scholar 

  55. Parsaei S, Zebarjad SM, Moghim MH (2022) Fabrication and post-processing of PI/PVDF-HFP/PI electrospun sandwich separators for lithium-ion batteries. Polym Eng Sci 62:3641–3651. https://doi.org/10.1002/pen.26133

    Article  CAS  Google Scholar 

  56. Veitl J, Weber H-K, Frankenberger M, Pettinger K-H (2022) Modification of battery separators via electrospinning to enable lamination in cell assembly. Energies 15:8430. https://doi.org/10.3390/en15228430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mojtaba Zebarjad.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, M., Moghim, M.H., Zebarjad, S.M. et al. Surface modification of a polypropylene separator by an electrospun coating layer of Poly(vinyl alchohol)-SiO2 for lithium-ion batteries. J Polym Res 30, 129 (2023). https://doi.org/10.1007/s10965-023-03491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03491-2

Keywords

Navigation