Skip to main content
Log in

Poly(methyl methacrylate-butyl-acrylamide-styrene)/polyethylene electrospinning separator incorporated with ionic liquid for safer LiNi0.5Co0.2Mn0.3O2 cathode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To significantly improve the safety property of commercial lithium-ion batteries, replacing the flammable carbonate solvents by the ionic liquid solvents should be the convenient strategy. However, the special structure of ionic liquid resulted in its poor wettability with traditional polyolefin separators, leading to the high internal resistance and pitiful cycle stability of the assembled battery. To solve the incompatibility between ionic liquid and polyolefin separator, the poly(methyl methacrylate-butyl-acrylamide-styrene) (P(MMA-BA-AN-St)) copolymer was coated onto polyethylene (PE) separator by electrospinning technique. The contact angle between imidazole ionic liquid electrolyte and separator sharply decreased from 77.9° for PE separator to 48.4° for P(MMA-BA-AN-St)/PE separator. Meanwhile, the P(MMA-BA-AN-St)/PE separator saturated with the ionic liquid electrolyte presented the non-flammability, higher ionic conductivity of 5.5 × 10−4 S cm−1, wider oxidative decomposition potential, and improved electrochemical stability compared with the carbonate electrolyte, contributing to the better coulombic efficiency (close to 100%), capacity retention, and rate property for the high-energy–density Li/LiNi0.5Co0.2Mn0.3O2 coin cell. Thus, the developed separator provided an alternatives to match the safer ionic liquid electrolyte with 4 V cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dong P, Wang D, Yao Y, Li X, Zhang Y, Ru J, Ren T (2017) Stabilizing interface layer of LiNi0.5Co0.2Mn0.3O2 cathode materials under high voltage using p-toluenesulfonyl isocyanate as film forming additive. J Power Sources 344:111–118

    Article  CAS  Google Scholar 

  2. Song YZ, Yuan JJ, Yin X, Zhang Y, Lin CE, Sun CC, Fang LF, Zhu BK, Zhu LP (2018) Effect of polyphenol-polyamine treated polyethylene separator on the ionic conduction and interface properties for lithium-metal anode batteries. J Electroanal Chem 816:68–74

    Article  CAS  Google Scholar 

  3. Dong Y, Duan H, Park K, Zhao Y (2017) Mo6+ doping in Li3VO4 anode for Li-ion batteries: significantly improve the reversible capacity and rate performance. ACS Appl Mater Interfaces 9:27688–27696

    Article  CAS  PubMed  Google Scholar 

  4. Zhao C, Ding F, Li H, Zhang S, Liu X, Xu Q (2020) Ionic liquid-modified poly (propylene carbonate)-based electrolyte for all-solid-state lithium battery. Ionics 26:5503–5511

    Article  CAS  Google Scholar 

  5. Wang Y, Liao Y, Li W, Tang X, Li X (2015) Carbon coating of Li4Ti5O12-TiO2 anode by using cetyl trimethyl ammonium bromide as dispersant and phenolic resin as carbon precursor. Ionics 21:1539–1544

    Article  CAS  Google Scholar 

  6. Xue L, Liao Y, Yang L, Li X, Li W (2015) Improved rate performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery by carbon coating. Ionics 21:1269–1275

    Article  CAS  Google Scholar 

  7. Luo X, Liao Y, Zhu Y, Li M, Chen F, Huang Q, Li W (2017) Investigation of nano-CeO2 contents on the properties of polymer ceramic separator for high voltage lithium ion batteries. J Power Sources 348:229–238

    Article  CAS  Google Scholar 

  8. Wang R, Cui W, Chu F, Wu F (2020) Lithium metal anodes: present and future. J Energy Chem 48:145–159

    Article  Google Scholar 

  9. Lyu Y, Wu X, Wang K, Feng Z, Cheng T, Liu Y, Wang M, Chen R, Xu L, Zhou J, Lu Y, Guo B (2021) An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater 11:2000982

    Article  CAS  Google Scholar 

  10. Ou J, Yang L, Jin F, Wu S, Wang J (2020) High performance of LiFePO4 with nitrogen-doped carbon layers for lithium ion batteries. Adv Powder Technol 31:1220–1228

    Article  CAS  Google Scholar 

  11. Chen T, Liao Y, Yang L, Li X, Li W (2015) Improved performance of LiNi0.5Mn1.5O4 cathode for high-voltage lithium-ion battery at elevated temperature by using gel polymer electrolyte. Ionics 21:2457–2463

    Article  CAS  Google Scholar 

  12. Geng X, Liao Y, Rao M, Li X, Li W (2015) Mesoporous carbon-sulfur composite as cathode for lithium-sulfur battery. Ionics 21:645–650

    Article  CAS  Google Scholar 

  13. Tan SJ, Zeng XX, Ma Q, Wu XW, Guo YG (2018) Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem Energy Rev 1:113–138

    Article  CAS  Google Scholar 

  14. Banitaba SN, Semnani D, Fakhrali A, Ebadi SV, Heydari-Soureshjani E, Rezaei B, Ensafi AA (2020) Electrospun PEO nanofibrous membrane enable by LiCl, LiClO4, and LiTFSI salts: a versatile solvent-free electrolyte for lithium-ion battery application. Ionics 26:3249–3260

    Article  CAS  Google Scholar 

  15. Peng L, Kong X, Li H, Wang X, Shi C, Hu T, Liu Y, Zhang P, Zhao J (2021) A rational design for a high-safety lithium-ion battery assembled with a heatproof–fireproof bifunctional separator. Adv Funct Mater 31:2008537

    Article  CAS  Google Scholar 

  16. Liao YH, Li WS (2017) Research progresses on gel polymer separators for lithium-ion batteries. Acta Phys Chim Sin 33:1533–1547

    CAS  Google Scholar 

  17. Gong X, Luo H, Liu G, Luo C, Niu Y, Li G (2021) High-performance gel polymer electrolytes derived from PAN-POSS/PVDF composite membranes with ionic liquid for lithium ion batteries. Ionics 27:1–9

    Article  Google Scholar 

  18. Fang S, Zhang Z, Jin Y, Yang L, Hirano S, Tachibana K, Katayama S (2011) New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. J Power Sources 196:5637–5644

    Article  CAS  Google Scholar 

  19. Choi NS, Koo B, Yeon JT, Li KT, Kim DW (2011) Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes. Electrochim Acta 56:7249–7255

    Article  CAS  Google Scholar 

  20. An Y, Zuo P, Du C, Ma Y, Cheng X, Lin J, Yin G (2012) Effects of VC-LiBOB binary additives on SEI formation in ionic liquid-organic composite electrolyte. RSC Adv 2:4097–4102

    Article  CAS  Google Scholar 

  21. Francis CFJ, Kyratzis IL, Best AS (2020) Lithium-ion battery separators for ionic-liquid electrolytes: a review. Adv Mater 32:1904205

    Article  CAS  Google Scholar 

  22. Sun Y, Wang J, Prausnitz JM (2021) Interfacial properties between ionic-liquid-based electrolytes and lithium-ion-battery separator. AIChE J 67:e17208

    Article  CAS  Google Scholar 

  23. Zhang H, Zhang Y, Xu T, John AE, Li Y, Li W, Zhu B (2016) Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries. J Power Sources 329:8–16

    Article  CAS  Google Scholar 

  24. Yang G, Song Y, Wang Q, Zhang L, Deng L (2020) Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater Des 190:108563

    Article  CAS  Google Scholar 

  25. Liao Y, Sun C, Hu S, Li W (2013) Anti–thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery. Electrochim Acta 89:461–468

    Article  CAS  Google Scholar 

  26. Li M, Liao Y, Liu Q, Xu J, Sun P, Shi H, Li W (2018) Application of the imidazolium ionic liquid based nano-particle decorated gel polymer electrolyte for high safety lithium ion battery. Electrochim Acta 284:188–201

    Article  CAS  Google Scholar 

  27. Barbosa JC, CorreiaRGonçalves DM, de Zea Bermudez V, Silva MM, Lanceros-Mendez S, Costa CM (2021) Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended with different ionic liquids for lithium ion batteries. J Colloid Interf Sci 582:376–386

    Article  CAS  Google Scholar 

  28. Caimi S, Wu H, Morbidelli M (2018) PVdF-HFP and ionic-liquid-based, freestanding thin separator for lithium-ion batteries. ACS Appl Energy Mater 1:5224–5232

    CAS  Google Scholar 

  29. Evans T, Lee JH, Bhat V, Lee S (2015) Electrospun polyacrylonitrile microfiber separators for ionic liquid electrolytes in Li-ion batteries. J Power Sources 292:1–6

    Article  CAS  Google Scholar 

  30. Tseng YC, Wu Y, Tsao CH, Ten H, Hou SS, Jan JS (2019) Polymer electrolytes based on poly (VdF-co-HFP)/ionic liquid/carbonate membranes for high-performance lithium-ion batteries. Polymer 173:110–118

    Article  CAS  Google Scholar 

  31. Rao M, Geng X, Liao Y, Hu S, Li W (2012) Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. J Membrane Sci 399:37–42

    Article  Google Scholar 

  32. Hu Z, Chen J, Guo Y, Zhu J, Qu X, Niu W, Liu X (2020) Fire-resistant, high-performance gel polymer electrolytes derived from poly (ionic liquid)/P(VDF-HFP) composite membranes for lithium ion batteries. J. Membrane Sci. 599:117827

    Article  CAS  Google Scholar 

  33. Yang P, Liu L, Li L, Hou J, Xu Y, Ren X, An M, Li N (2014) Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium ion battery. Electrochim Acta 115:454–460

    Article  CAS  Google Scholar 

  34. Yang CL, Liu HY, Xia QL, Li ZH, Xiao QZ, Lei GT (2014) Effects of SiO2 nanoparticles and diethyl carbonate on the electrochemical properties of a fibrous nanocomposite polymer electrolyte for rechargeable lithium batteries. Arab J Sci Eng 39:6711–6720

    Article  CAS  Google Scholar 

  35. Lalia BS, Samad YA, Hashaikeh R (2013) Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance. J Solid State Electr 17:575–581

    Article  CAS  Google Scholar 

  36. Costa CM, Gomez Ribelles JL, Lanceros-Méndez S, Appetecchi GB, Scrosati B (2014) Poly (vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. J Power Sources 245:779–786

    Article  CAS  Google Scholar 

  37. Jung SK, Gwon H, Hong J, Park KY, Seo DH, Kim H, Hyun J, Yang W, Kang K (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4:1300787

    Article  Google Scholar 

  38. Zhang Y, Xia G, Zhang J, Wang D, Dong P, Duan J (2020) Boosting high-voltage cyclic stability of nickel-rich layered cathodes in full-cell by metallurgy-inspired coating strategy. App. Surf. Sci. 509:145380

    Article  CAS  Google Scholar 

  39. Luo X, Liao Y, Xie H, Huang Q, Li W (2016) Polyethylene supported poly(methyl methacrylate-co-butyl acrylate) based novel gel polymer electrolyte for lithium ion battery. Ionics 22:1035–1042

    Article  CAS  Google Scholar 

  40. Li Z, Chen T, Liao Y (2015) Performance enforcement of gel polymer electrolyte for lithium ion battery with co-doping silicon dioxide and zirconium dioxide nanoparticles. Ionics 21:2763–2770

    Article  CAS  Google Scholar 

  41. Luo X, Liao Y, Xie H, Zhu Y, Huang Q, Li W (2016) Enhancement of cyclic stability for high voltage lithium ion battery at elevated temperature by using polyethylene-supported poly(methyl methacrylate-butyl acrylate-acrylonitrile-styrene) based novel gel electrolyte. Electrochim Acta 220:47–56

    Article  CAS  Google Scholar 

  42. Li G, Luo X, Liao Y, Zhou H, Zhu Y, Li W (2020) Effect of pore structure in polymer membrane from various preparation techniques on cyclic stability of 4.9 V LiNi0.5Mn1.5O4 at elevated temperature. J Membrane Sci 597:117628

    Article  CAS  Google Scholar 

  43. Huang X, Duan J, He J, Shi H, Li Y, Zhang Y, Wang D, Dong P, Zhang Y (2020) Ions transfer behavior during water washing for LiNi0.815Co0.15Al0.035O2: role of excess lithium. Mater Today Energy 17:100440

    Article  Google Scholar 

  44. Xu M, Zhou L, Hao L, Xing L, Li W (2011) Investigation and application of lithium difluoro (oxalate) borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries. J Power Sources 196:6794–6801

    Article  CAS  Google Scholar 

  45. Matsui M, Deguchi S, Kuwata H, Imanishi N (2015) In-operando FTIR spectroscopy for composite electrodes of lithium-ion batteries. Electrochemistry 83:874–878

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful for the financial support from the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515010141) and Guangzhou Science and Technology Plan Project (Grant No. 202102080610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhao Liao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, M., Luo, X., Liao, Y. et al. Poly(methyl methacrylate-butyl-acrylamide-styrene)/polyethylene electrospinning separator incorporated with ionic liquid for safer LiNi0.5Co0.2Mn0.3O2 cathode. Ionics 28, 543–554 (2022). https://doi.org/10.1007/s11581-021-04342-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04342-0

Keywords

Navigation