Skip to main content

Advertisement

Log in

Development of electrospun Plectranthus amboinicus loaded PCL polymeric nanofibrous scaffold for skin wound healing application: in-vitro and in-silico analysis

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Wound healing is an essential cellular process involving numerous mechanisms. For an effective wound healing process, a suitable material must be applied to prevent the wound from various infections. Recently, researchers have mainly concentrated on development of wound dressing material by combining polymer with medicinal plant extracts based electrospun nanofibers due to their structural morphology mimicking extra cellular matrix of native skin organ. Thus, this study emphasizes on synthesizing nanofibrous scaffolds of polycaprolactone (PCL) incorporated with the extract of P. amboinicus, a therapeutic and bioactive drug, for wound healing application. The leaf extract contains phytochemicals such as tannins, steroids, essential oils, flavonoids, alkaloids and terpenes, etc., which are preferable for skin wound healing application. The fabricated nanofibers are characterized by SEM, XRD, FTIR analysis. The results of SEM analysis reveals structural morphology of electrospun nanofibrous scaffold showing a continuous, smooth, bead-less and inter connective nanofibrous structure. The results of XRD pattern reveals two characteristic peaks at 2θ = 21.4° and 2θ = 23.4° for the developed nanofibers which confirms that the PCL structure was maintained. The in-vitro MTT assay shows that the biocompatibility property is the highest for P. amboinicus (3%) loaded PCL nanofibrous scaffold. The fabricated P. amboinicus (3%) loaded PCL nanofiber shows higher anti-bacterial efficiency against mixed bacterial culture, thus providing their capability for pathogenic resistance. The results of contact angle measurement exhibit 112°±0.51, 77.1°± 0.1 and 53.1°±0.4 for PCL, PCL + P. amboinicus (1 and 3%) nanofibrous scaffolds proving an increased hydrophilic character of nanofibers that helps in maintaining moist environment on the wound site. From the results of gas chromatography–mass spectrometry, three phytochemical compounds i.e., diethyl phthalate, n-hexadecanoic acid and stigmasterol, are selected based on the area percentage. Docking analysis is carried out to confirm the wound healing property of the selected phytochemical compounds present in the methanolic extract of P. amboinicus against matrix metalloproteinases (MMP8) target protein. The docking results confirm that the electrospun PCL + P. amboinicus nanofibrous scaffold is a suitable therapeutic material for skin wound healing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data that support the findings of this study are included within the article.

References

  1. Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  2. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC (2019) Wound Healing: a Cellular Perspective. Physiol Rev 99:665–706

    Article  CAS  PubMed  Google Scholar 

  3. Nethi SK, Das S, Patra CR, Mukherjee S (2019) Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci 7:2652–2674

    Article  CAS  PubMed  Google Scholar 

  4. Mistry P, Chhabra R, Muke S, Narvekar A, Sathaye S, Jain R, Dandekar P (2021) Fabrication and characterization of starch-TPU based nanofibers for wound healing applications. Mater Sci Eng C 119:111316

    Article  CAS  Google Scholar 

  5. Chen K, Wang F, Liu S, Wu X, Xu L, Zhang D (2020) In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Int J Biol Macromol 148:501–509

    Article  CAS  PubMed  Google Scholar 

  6. Rathinavel S, Ekambaram S, Korrapati PS, Sangeetha D (2020) Design and fabrication of electrospun SBA-15-incorporated PVA with curcumin: a biomimetic nanoscaffold for skin tissue engineering. Biomed Mater 15:035009

    Article  CAS  PubMed  Google Scholar 

  7. Su S, Bedir T, Kalkandelen C, Ozan Başar A, Turkoğlu Şaşmazel H, Bulent Ustundag C, Sengor M, Gunduz O (2021) Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications. Eur Polym J 142:110158

    Article  CAS  Google Scholar 

  8. Annabi N, Rana D, Shirzaei Sani E, Portillo-Lara R, Gifford JL, Fares MM, Weiss AS (2017) Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials 139:229–243

    Article  CAS  PubMed  Google Scholar 

  9. Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B (2018) Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 83:185–199

    Article  Google Scholar 

  10. Bužarovska A, Dinescu S, Lazar AD, Serban M, Pircalabioru GG, Costache M, Gualandi C, Avérous L (2019) Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. Mater Sci Eng C 104:109893

  11. Li T, Sun M, Wu S (2022) State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications. Nanomaterials 12(5):784

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nathoo R, Howe N, Cohen G (2014) Skin substitutes: an overview of the key players in wound management. J Clin Aesthet Dermatol 7:44–48

    PubMed  PubMed Central  Google Scholar 

  13. Liu X, Xu H, Zhang M, Yu DG (2021) Electrospun medicated nanofibers for wound healing. Membranes 9(10):770

    Article  Google Scholar 

  14. Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Duan B (2022) State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl Mater Today 27:101473

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kataria K, Gupta A, Rath G, Mathur RB, Dhakate SR (2014) In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm 469:102–110

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Dong T, Li Z, Ni S, Zhou F, Alimi OA, Wu S (2022) Review of advances in electrospinning-based strategies for spinal cord regeneration. Mater Today Chem 24:100944

    Article  Google Scholar 

  17. Wu S, Zhao W, Sun M, He P, Wang LH, Ma Q (2022) Novel bi-layered dressing patches constructed with radially-oriented nanofibrous pattern and herbal compound-loaded hydrogel for accelerated diabetic wound healing. Appl Mater Today 28:101542

    Article  Google Scholar 

  18. Ekambaram R, Dharmalingam S (2020) Fabrication and evaluation of electrospun biomimetic sulphonated PEEK nanofibrous scaffold for human skin cell proliferation and wound regeneration potential. Mater Sci Eng C 115:111150

    Article  CAS  Google Scholar 

  19. Augustine R, Rehman SRU, Ahmed R, Zahid AA, Sharifi M, Falahati M, Hasan A (2020) Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol 156:153–170

    Article  CAS  PubMed  Google Scholar 

  20. Poornima B, Korrapati PS (2017) Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydr Polym 157:1741–1749

    Article  CAS  PubMed  Google Scholar 

  21. Pedram Rad Z, Mokhtari J, Abbasi M (2018) Preparation and characterization of Calendula officinalis-loaded PCL/gum arabic nanocomposite scaffolds for wound healing applications. Iran Polym J 28:51–63

    Article  Google Scholar 

  22. Liu M, Duan XP, Li YM, Yang DP, Long YZ (2017) Electrospun nanofibers for wound healing mater. Sci Eng C 76:1413–1423

    Article  CAS  Google Scholar 

  23. Gao Y, Bach Truong Y, Zhu Y, Louis Kyratzis I (2014) Electrospun antibacterial nanofibers: production, activity, andin vivo applications. J Appl polym sci 131:40797

    Article  Google Scholar 

  24. Xue J, He M, Liang Y, Crawford A, Coates P, Chen D, Zhang L (2014) Fabrication and evaluation of electrospun PCL–gelatin micro-/nanofiber membranes for anti-infective GTR implants. J Mater Chem B 2:6867–6877

    Article  CAS  PubMed  Google Scholar 

  25. Rather HA, Thakore R, Singh R, Jhala D, Singh S, Vasita R (2018) Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioactive Mater 3:201–211

    Article  Google Scholar 

  26. Shoba E, Lakra R, Kiran MS, Korrapati PS (2017) Fabrication of core-shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics. Biomed Mater 12:35005

    Article  Google Scholar 

  27. Raina N, Pahwa R, Khosla JK (2022) Polycaprolactone-based materials in wound healing applications. Polym Bull 79:7041–7063

    Article  CAS  Google Scholar 

  28. Suryamathi M, Ruba C, Viswanathamurthi P, Balasubramanian V, Perumal P (2018) Tridax procumbens extract loaded electrospun PCL nanofibers: a novel wound dressing material. Macromol Res 27:55–60

    Article  Google Scholar 

  29. Suganya S, Senthil Ram T, Lakshmi BS, Giridev VR (2011) Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings. J Appl Polym Sci 121:2893–2899

    Article  CAS  Google Scholar 

  30. Fahimirad S, Abtahi H, Satei P, Ghaznavi-Rad E, Moslehi M, Ganji A (2021) Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polym 259:117640

    Article  CAS  PubMed  Google Scholar 

  31. Fahimirad S, Satei P, Ganji A, Abtahi H (2022) Wound healing performance of PVA/PCL based electrospun nanofiber incorporated green synthetized CuNPs and Quercus infectoria extracts. J Biomater Sci Polym Ed 1–25

  32. Agnes Mary S, GiriDev VR (2015) In vivo bioactivity of herbal-drug-incorporated nanofibrous matrixes. J Appl Polym Sci 132:42178

    Article  Google Scholar 

  33. Kim MS, Kim HJ, Jang JY, Shin HS (2018) Development of coaxial alginate-PCL nanofibrous dressing for controlled release of spirulina extract. J Biomater Sci Polym Ed 29:1389–1400

    Article  CAS  PubMed  Google Scholar 

  34. Rathinavel S, Korrapati PS, Kalaiselvi P, Dharmalingam S (2021) Mesoporous silica incorporated PCL/Curcumin nanofiber for wound healing application. Eur J Pharm Sci 167:106021

    Article  CAS  PubMed  Google Scholar 

  35. Amer AA, Mohammed RS, HusseinY, Ali AS, Khalil AA (2022) Development of lepidium sativum extracts/PVA electrospun nanofibers as wound healing dressing. ACS Omega 24:20683–20695

    Article  Google Scholar 

  36. Adamu BF, Gao J, Jhatial AK, Kumelachew DM (2021) A review of medicinal plant-based bioactive electrospun nano fibrous wound dressings. Mater Design 209:109942

    Article  CAS  Google Scholar 

  37. Gorain B, Pandey M, Leng NH, Yan CW, Nie KW, Kaur SJ, Choudhury H (2022) Advanced drug delivery systems containing herbal components for wound healing. Int J Pharm 121617

  38. Ekambaram R, Sugumar M, Swaminathan E, Raj APM, Dharmalingam S (2021) Design and fabrication of electrospun Morinda citrifolia-based nanofibrous scaffold as skin wound dressing material: in vitro and in silico analysis. Biomed Mater 16:045014

    Article  CAS  Google Scholar 

  39. Rice LJ, Brits GJ, Potgieter CJ, Van Staden J (2011) Plectranthus: a plant for the future? South Afr J Bot 77:947–959

    Article  Google Scholar 

  40. Lukhoba CW, Simmonds MSJ, Paton AJ (2006) Plectranthus: a review of ethnobotanical uses. J Ethnopharmacol 103:1–24

    Article  PubMed  Google Scholar 

  41. Harsha V, Hebbar S, Shripathi V, Hegde G (2003) Ethnomedicobotany of Uttara Kannada District in Karnataka, India—plants in treatment of skin diseases. J Ethnopharmacol 84:37–40

    Article  CAS  PubMed  Google Scholar 

  42. Senthilkumar A, Venkatesalu V (2010) Chemical composition and larvicidal activity of the essential oil of Plectranthus amboinicus (Lour.) Spreng against Anopheles stephensi: a malarial vector mosquito. Parasitol Res 107:1275–1278

    Article  PubMed  Google Scholar 

  43. Chen YS, Yu HM, Shie JJ, Cheng TJ, Wu CY, Fang JM (2014) Chemical constituents of Plectranthus amboinicus and the synthetic analogs possessing anti-inflammatory activity. Bioorg Med Chem 22:1766–1772

    Article  CAS  PubMed  Google Scholar 

  44. Jain AK, Dixit A, Mehta SC (2012) Wound healing activity of aqueous extracts of leaves and roots of Coleus aromaticus in rats. Acta Pol Pharm 69:1119–1123

    PubMed  Google Scholar 

  45. Leu WJ, Chen JC, Guh JH (2019) Extract from Plectranthus amboinicus inhibit maturation and release of interleukin 1β through inhibition of NF-κB nuclear translocation and NLRP3 inflammasome activation. Front Pharmacol 10:573

  46. Kuo YS, Chien HF, Lu W (2012) Plectranthus amboinicus and Centella asiatica cream for the treatment of diabetic foot ulcers. Evid Based Complementary Altern Med 2012

  47. Shenoy S, Vinod MS, Amberkar M, Amuthan A (2012) Effect of ethanolic extract of plectranthus amboinicus leaf on healing of burn wound in wistar rats. Int J Appl Biol Pharm Technol 3(3):32–35

    Google Scholar 

  48. Geronikaki A, Druzhilovsky D, Zakharov A, Poroikov V (2008) Computer-aided prediction for medicinal chemistry via the Internet1. SAR QSAR Environ Res 19:27–38

  49. Sadym A, Lagunin A, Filimonov D, Poroikov V (2003) Prediction of biological activity spectra via the internet. SAR QSAR Environ Res 14:339–347

    Article  CAS  PubMed  Google Scholar 

  50. Khurana N, Ishar MPS, Gajbhiye A, Goel RK (2011) PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. Eur J Pharmacol 662:22–30

    Article  CAS  PubMed  Google Scholar 

  51. Goel RK, Singh D, Lagunin A, Poroikov V (2010) PASS-assisted exploration of new therapeutic potential of natural products. Med Chem Res 20:1509–1514

    Article  Google Scholar 

  52. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  53. Victor FS, Kugarajah V, Bangaru M, Ranjan S, Dharmalingam S (2021) Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination. Environ Sci Pollut Res 13:1–4

    CAS  Google Scholar 

  54. Kugarajah V, Dharmalingam S (2021) Effect of silver incorporated sulphonated poly ether ether ketone membranes on microbial fuel cell performance and microbial community analysis. Chem Eng J 415:128961

    Article  CAS  Google Scholar 

  55. Vieth M, Cummins DJ (2000) DoMCoSAR: a novel approach for establishing the docking mode that is consistent with the structure – activity relationship. Application to HIV-1 protease inhibitors and VEGF receptor tyrosine kinase inhibitors. J Med Chem 43:3020–3032

    Article  CAS  PubMed  Google Scholar 

  56. Muegge I, Rarey M (2001) Small molecule docking and scoring. Rev Comput Chem 1:60

    Google Scholar 

  57. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6:265sr6-265sr6

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nguyen TT, Mobashery S, Chang M (2016) Roles of matrix metalloproteinases in cutaneous wound healing. Wound Healing - New Insights into Ancient Challenges, pp 37–71

  60. Li K, Tay FR, Yiu CKY (2019) The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol Ther 207:107465

    Article  PubMed  Google Scholar 

  61. dos Santos Silva JM, da Silva Almeida JRG, Alves CDSC, Nery DA, Damasceno LMO, de Souza Araújo C, Rolim LA, de Oliveira AP (2020) Antimicrobial activity from Species P. amboinicus(Lour.) Spreng, a review. Eur J Med Plants 31:1–14

  62. Nguyen NQ, Minh LV, Trieu LH, Bui LM, Lam TD, Hieu VQ, Khang TV, Trung LN (2020) Evaluation of total polyphenol content, total flavonoid content, and antioxidant activity of P. amboinicusleaves. InIOP Conference Series: Materials Science and Engineering 736:062017

  63. Santos FAV, Serra CG, Bezerra RJAC, Figueredo FG, Edinardo, Matias FF, Coutinho HDM (2016) Antibacterial activity of Plectranthus amboinicus Lour (Lamiaceae) essential oil against Streptococcus mutans. Eur J Integr Med 8:293–297

  64. Paramasivam D, Balasubramanian B, Park S, Alagappan P, Kaul T, Liu W, Pachiappan P (2020) Phytochemical profiling and biological activity of P. amboinicus(Lour.) Mediated by various solvent extracts against Aedes aegypti larvae and toxicity evaluation. Asian Pac J Trop Med 13:494

    Article  CAS  Google Scholar 

  65. Maldonado D, Subramanian G, Kurup R, Ansari AA (2020) Antifungal activity and phytochemical screening of Cymbopogon citratus, Cajanus cajan and Plectranthus amboinicus leaves collected in Guyana, South America. Int J Pathogen Res 5:1–9

    Article  Google Scholar 

  66. Harefa K, Sulastri D, Nasrul E, Ilyas S (2021) Analysis of several inflammatory markers expression in obese rats given P. amboinicus(Lour.) Spreng ethanol extract. Pharmacognosy J 13:172–178

    Article  CAS  Google Scholar 

  67. Al-Kaabi WJ, Albukhaty S, Al-Fartosy AJM, Al-Karagoly HK, Al-Musawi S, Sulaiman GM, Dewir YH, Alwahibi MS, Soliman DA (2021) Development of Inula graveolens (L.) plant extract electrospun/polycaprolactone nanofibers: a novel material for biomedical application. Appl Sci 11:828

    Article  CAS  Google Scholar 

  68. Kmiec E, Borjigin, Eskridge N, Strouse B, Bialk (2013) Electrospun fiber membranes enable proliferation of genetically modified cells. Int J Nanomed 8:855

    Article  Google Scholar 

  69. Qian Y, Zhang Z, Zheng L, Song R, Zhao Y (2014) Fabrication and characterization of electrospun polycaprolactone blended with chitosan-gelatin complex nanofibrous mats. J Nanomater 2014:1–7

    Google Scholar 

  70. Shi R, Geng H, Gong M, Ye J, Wu C, Hu X, Zhang L (2018) Long-acting and broad-spectrum antimicrobial electrospun poly (ε-caprolactone)/gelatin micro/nanofibers for wound dressing. J Colloid Interface Sci 509:275–284

    Article  CAS  PubMed  Google Scholar 

  71. Suresh S, Muthukrishnan L, Vennila S, Paiman S, Faruq M, Al-Lohedan HA, Oh WC (2020) Mechanistic anticarcinogenic efficacy of phytofabricated gold nanoparticles on human lung adenocarcinoma cells. J Exp Nanosci 15:160–173

  72. Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P (2014) Biosynthesis of silver nanoparticles using Plectranthusamboinicus leaf extract and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 128:257–262

    Article  CAS  PubMed  Google Scholar 

  73. Sreelakshmy S, Thangapandiyan S (2019) In vitro antibacterial efficacy of Plectranthus amboinicus mediated silver nanoparticles against urinary tract pathogens. In Vitro. Asian J Pharm Clin Res 12:153–159

  74. Qi J, Zhang H, Wang Y, Mani MP, Jaganathan S (2018) Development and blood compatibility assessment of electrospun polyvinyl alcohol blended with metallocene polyethylene and plectranthus amboinicus (PVA/mPE/PA) for bone tissue engineering. Int J Nanomed 13:2777–2788

    Article  CAS  Google Scholar 

  75. Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine 12:1335–1352

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bhattacharya D, Ghosh B, Mukhopadhyay M (2019) Development of nanotechnology for advancement and application in wound healing: a review. IET Nanobiotechnol 13:778–785

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fadaie M, Mirzaei E (2018) Nanofibrillated chitosan/polycaprolactonebionanocomposite scaffold with improved tensile strength and cellular behavior. Nanomed J 5:77–89

    CAS  Google Scholar 

  78. Rathinavel S, Indrakumar J, Korrapati PS, Dharmalingam S (2022) Synthesis and fabrication of amine functionalized SBA-15 incorporated PVA/Curcumin nanofiber for skin wound healing application. Colloids Surf A 637:128185

    Article  CAS  Google Scholar 

  79. Punet Kumar S, Kumar N (2020) P. amboinicus: a review on its pharmacological and pharmacognostical studies. Am J Physiol Biochem Pharmacol 10:55–62

    Article  Google Scholar 

  80. Janakiraman D, Somasundaram C (2014) Parameswari*; evaluation of anti inflammatory effect of Plectranthusamboinicus leaf extract - an invitro study. J Adv Pharm Educ Res 4:229–232

    Google Scholar 

  81. Ramamoorthy R, Andiappan M, Muthalagu M (2021) Preparation and characterization of Terminalia bellerica loaded PCL nanofibrous mats for biomedical applications. Mater Today: Proc 45:7247–7252

  82. Ismayil S, Nimila PJ (2019) Antimicrobial activity of Plectranthus amboinicus (Lour.) Against gram negative bacteria klebsiella pneumoniae and Shigella flexneri and their phytochemical tests. Int J Health Sci Res 9:304–311

    Google Scholar 

  83. Bhatt P, Joseph GS, Negi PS, Varadaraj MC (2013) Chemical composition and nutraceutical potential of Indian Borage (Plectranthusamboinicus) stem extract. J Chem 1–7

  84. Sivaranjani D, Saranraj P, Manigandan M, Amala K (2019) Antimicrobial activity of Plectranthus amboinicus solvent extracts against Human Pathogenic Bacteria and Fungi. J Drug Deliv Ther 9(3):36–39

    Article  Google Scholar 

  85. Mouro C, Gomes AP, Ahonen M, Fangueiro R, Gouveia IC (2021) Chelidoniummajus L. incorporated emulsion electrospun PCL/PVA_PEC nanofibrous meshes for antibacterial wound dressing applications. Nanomaterials 11(7):1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Patel R, Mahobia NK, Gendle R, Kaushik B, Singh SK (2010) Diuretic activity of leaves of Plectranthusamboinicus (Lour) Spreng in male albino rats. Pharmacogn Res 2:86

    Article  Google Scholar 

  87. Hassani MS, Zainati I, Zrira S, Mahdi S, Oukessou M (2012) Chemical composition and antimicrobial activity of Plectranthus amboinicus(Lour) Spring. Essential oil from Archipelago of Comoros. J Essent Oil Bearing Plants 15:637–644

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. S. Angayarkanni, Department of Chemistry, Anna University Chennai-25, Tamil Nadu, India, for providing support for contact angle measurement.

Funding

The authors wish to thank the Department of Biotechnology (DBT) India (Letter No. BT/PR12574/PBD/26/437/2014 dated 21.06.2016) for their financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

Saranya Rathinavel, Moogambigai Sugumar, Elamathi Swaminathan, Sudharshan Kubendren, Kalaimagal Samvasivan: Conceptualization, Methodology, Software Saranya Rathinavel, Moogambigai Sugumar, Elamathi Swaminathan, Sudharshan Kubendren, Kalaimagal Samvasivan: Data curation, Writing- Original draft preparation. Dharmalingam Sangeetha: Visualization, Investigation. Dharmalingam Sangeetha: Supervision. Moogambigai Sugumar: Software, Validation. Dharmalingam Sangeetha, Saranya Rathinavel, Moogambigai Sugumar, Elamathi Swaminathan, Sudharshan Kubendren, Kalaimagal Samvasivan: Writing- Reviewing and Editing.

Corresponding author

Correspondence to Dharmalingam Sangeetha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.17 MB )

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinavel, S., Sugumar, M., Swaminathan, E. et al. Development of electrospun Plectranthus amboinicus loaded PCL polymeric nanofibrous scaffold for skin wound healing application: in-vitro and in-silico analysis. J Polym Res 30, 110 (2023). https://doi.org/10.1007/s10965-023-03474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03474-3

Keywords

Navigation