Skip to main content
Log in

Characterization of drug-loaded alginate-chitosan polyelectrolyte nanoparticles synthesized by microfluidics

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the microfluidic approach (MF) and the bulk mixing method (BM) were utilized to synthesize 5-fluorouracil (5-FU)-loaded alginate-chitosan (Alg-CS) polyelectrolyte-based nanoparticles (NPs). Characterization studies revealed that MF NPs obtained a smaller mean diameter (~ 115 nm), narrower polydispersity index (0.14), and also a higher zeta potential (-38 mV) compared with BM NPs. Furthermore, drug encapsulation efficiency (EE) and drug loading capacity (LC) were both higher for MF NPs (%84 and %11, respectively). Moreover, convenient compatibility between 5-FU and Alg-CS was evidenced via fourier transform infrared spectroscopy (FTIR) test. In vitro release studies coupled with its kinetics revealed that drug release from MF NPs not only experienced a lower burst release (%4 after 30 min) but also a more controlled release (%29 after 8 h), and in turn, its release behavior followed the Higuchi model at different pHs. Eventually, due to the desirable properties of MF NPs, they can be considered a reliable drug delivery system for the controlled release of 5-FU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available from the corresponding author upon request.

References

  1. Anitha A, Maya S, Sivaram AJ, Mony U, Jayakumar R (2016) Combinatorial nanomedicines for colon cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(1):151. https://doi.org/10.1002/wnan.1353

    Article  CAS  PubMed  Google Scholar 

  2. Ibrahim B, Mady OY, Tambuwala MM, Haggag YA (2022) pH-Sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer. Nanomedicine 17(6):367. https://doi.org/10.2217/nnm-2021-0423

    Article  CAS  PubMed  Google Scholar 

  3. Wang R, Huang J, Chen J, Yang M, Wang H, Qiao H, Chen Z, Hu L, Di L, Li J (2019) Enhanced anti-colon cancer efficacy of 5-fluorouracil by epigallocatechin-3-gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles. Nanomed Nanotechnol Biol Med 21:102068. https://doi.org/10.1016/j.nano.2019.102068

    Article  CAS  Google Scholar 

  4. Chandran SP, Natarajan SB, Chandraseharan S, Shahimi MSBM (2017) Nano drug delivery strategy of 5-fluorouracil for the treatment of colorectal cancer. J Cancer Res Pract 4(2):45. https://doi.org/10.1016/j.jcrpr.2017.02.002

    Article  Google Scholar 

  5. Malekzadeh A, Zahedi P, Abdouss M (2022) Synthesis and performance evaluation of 5-fluorouracil-loaded zwitterionic poly (4-vinylpyridine) nanoparticles. New J Chem 46(18):8698. https://doi.org/10.1039/D2NJ00121G

    Article  CAS  Google Scholar 

  6. Blanco MD, Guerrero S, Benito M, Fernández A, Teijón C, Olmo R, Katime I, Teijón JM (2011) In vitro and in vivo evaluation of a folate-targeted copolymeric submicrohydrogel based on n-isopropylacrylamide as 5-fluorouracil delivery system. Polymers 3(3):1107. https://doi.org/10.3390/polym3031107

    Article  CAS  Google Scholar 

  7. Khan S, Anwar N (2019) Highly porous pH-responsive carboxymethyl chitosan-grafted-poly (acrylic acid) based smart hydrogels for 5-fluorouracil controlled delivery and colon targeting. Int J Polym Sci. https://doi.org/10.1155/2019/6579239

    Article  Google Scholar 

  8. Madadian-Bozorg N, Zahedi P, Shamsi M, Safarian S (2018) Poly (methacrylic acid)-based molecularly imprinted polymer nanoparticles containing 5-fluourouracil used in colon cancer therapy potentially. Polym Adv Technol 29(8):2401. https://doi.org/10.1002/pat.4353

    Article  CAS  Google Scholar 

  9. Pendekal MS, Tegginamat PK (2012) Development and characterization of chitosan-polycarbophil interpolyelectrolyte complex-based 5-fluorouracil formulations for buccal, vaginal and rectal application. DARU J Pharm Sci 20(1):1. https://doi.org/10.1186/2008-2231-20-67

    Article  CAS  Google Scholar 

  10. Hu C, Wei H, Hua B, Zhang Y, Wang G, Shen Y, Niu Y (2022) Preparation and application of poly (α-L-lysine)-based interpenetrating network hydrogel via synchronous free-radical polymerization and amine-anhydride reaction in water. J Polym Res 29(5):1. https://doi.org/10.1007/s10965-022-03054-x

    Article  CAS  Google Scholar 

  11. Cheng R, Zou R, Ou S, Guo R, Yan R, Shi H, Yu S, Li X, Bu Y, Lin M (2015) Graphene oxide complex as a pH-sensitive antitumor drug. Polym Chem 6(13):2401. https://doi.org/10.1039/C5PY00047E

    Article  CAS  Google Scholar 

  12. de Mattos AC, Altmeyer C, Tominaga TT, Khalil NM, Mainardes RM (2016) Polymeric nanoparticles for oral delivery of 5-fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. Eur J Pharm Sci 84:83. https://doi.org/10.1016/j.ejps.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  13. Mundargi RC, Tan E-L, Seo J, Cho N-J (2016) Encapsulation and controlled release formulations of 5-fluorouracil from natural Lycopodium clavatum spores. J Ind Eng Chem 36:102. https://doi.org/10.1016/j.jiec.2016.01.022

    Article  CAS  Google Scholar 

  14. Chen C-K, Wang Q, Jones CH, Yu Y, Zhang H, Law W-C, Lai CK, Zeng Q, Prasad PN, Pfeifer BA (2014) Synthesis of pH-responsive chitosan nanocapsules for the controlled delivery of doxorubicin. Langmuir 30(14):4111. https://doi.org/10.1021/la4040485

    Article  CAS  PubMed  Google Scholar 

  15. Ghaffari-Bohlouli P, Jafari H, Khatibi A, Bakhtiari M, Tavana B, Zahedi P, Shavandi A (2021) Osteogenesis enhancement using poly (l-lactide-co-d, l-lactide)/poly (vinyl alcohol) nanofibrous scaffolds reinforced by phospho-calcified cellulose nanowhiskers. Int J Biol Macromol 182:168. https://doi.org/10.1016/j.ijbiomac.2021.04.029

    Article  CAS  PubMed  Google Scholar 

  16. Khatibi A, Zahedi P, Ghourchian H, Lari AS (2021) Development of microfluidic-based cellulose acetate phthalate nanoparticles containing omeprazole for antiulcer activity: In vitro and in vivo evaluations. Eur Polym J 147:110294. https://doi.org/10.1016/j.eurpolymj.2021.110294

    Article  CAS  Google Scholar 

  17. Lari AS, Zahedi P, Ghourchian H, Khatibi A (2021) Microfluidic-based synthesized carboxymethyl chitosan nanoparticles containing metformin for diabetes therapy: In vitro and in vivo assessments. Carbohydr Polym 261:117889. https://doi.org/10.1016/j.carbpol.2021.117889

    Article  CAS  PubMed  Google Scholar 

  18. Lim E-K, Chung BH, Chung SJ (2018) Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr Drug Targets 19(4):300. https://doi.org/10.2174/1389450117666160602202339

    Article  CAS  PubMed  Google Scholar 

  19. Wu D, Zhu L, Li Y, Zhang X, Xu S, Yang G, Delair T (2020) Chitosan-based colloidal polyelectrolyte complexes for drug delivery: a review. Carbohydr Polym 238:116126. https://doi.org/10.1016/j.carbpol.2020.116126

    Article  CAS  PubMed  Google Scholar 

  20. Patel P, Mandal A, Gote V, Pal D, Mitra AK (2019) Thermosensitive hydrogel-based drug delivery system for sustained drug release. J Polym Res 26(6):1

    Article  Google Scholar 

  21. Barkhordari S, Yadollahi M, Namazi H (2014) pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J Polym Res 21(6):1

    Article  CAS  Google Scholar 

  22. Mohamadinooripoor R, Kashanian S, Moradipour P, Sajadimajd S, Arkan E, Tajehmiri A, Rashidi K (2022) Novel elastomeric fibrous composites of poly-ε-caprolactone/propolis and their evaluation for biomedical applications. J Polym Res 29(8):1. https://doi.org/10.1007/s10965-022-03165-5

    Article  CAS  Google Scholar 

  23. Ishihara M, Kishimoto S, Nakamura S, Sato Y, Hattori H (2019) Polyelectrolyte complexes of natural polymers and their biomedical applications. Polymers 11(4):672. https://doi.org/10.3390/polym11040672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun X, Liu C, Omer A, Yang L-Y, Ouyang X-K (2019) Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. Int J Biol Macromol 132:487. https://doi.org/10.1016/j.ijbiomac.2019.03.225

    Article  CAS  PubMed  Google Scholar 

  25. Kulkarni AD, Vanjari YH, Sancheti KH, Patel HM, Belgamwar VS, Surana SJ, Pardeshi CV (2016) Polyelectrolyte complexes: mechanisms, critical experimental aspects, and applications. Artif Cells Nanomed Biotechnol 44(7):1615. https://doi.org/10.3109/21691401.2015.1129624

    Article  CAS  PubMed  Google Scholar 

  26. Meka VS, Sing MK, Pichika MR, Nali SR, Kolapalli VR, Kesharwani P (2017) A comprehensive review on polyelectrolyte complexes. Drug Discov 22(11):1697. https://doi.org/10.1016/j.drudis.2017.06.008

    Article  CAS  Google Scholar 

  27. Shamsi M, Zahedi P (2017) On-chip preparation of streptokinase entrapped in chitosan nanoparticles used in thrombolytic therapy potentially. J Pharm Sci 106(12):3623. https://doi.org/10.1016/j.xphs.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  28. Cavalli R, Leone F, Minelli R, Fantozzi R, Dianzani C (2014) New chitosan nanospheres for the delivery of 5-fluorouracil: Preparation, characterization and in vitro studies. Curr Drug Deliv 11(2):270

    Article  CAS  PubMed  Google Scholar 

  29. Hongsa N, Thinbanmai T, Luesakul U, Sansanaphongpricha K, Muangsin N (2022) A novel modified chitosan/collagen coated-gold nanoparticles for 5-fluorouracil delivery: Synthesis, characterization, in vitro drug release studies, anti-inflammatory activity and in vitro cytotoxicity assay. Carbohydr Polym 277:118858. https://doi.org/10.1016/j.carbpol.2021.118858

    Article  CAS  PubMed  Google Scholar 

  30. Nawaz A, Latif MS, Alnuwaiser MA, Ullah S, Iqbal M, Alfatama M, Lim V (2022) Synthesis and characterization of chitosan-decorated nanoemulsion gel of 5-fluorouracil for topical delivery. Gels 8(7):412. https://doi.org/10.3390/gels8070412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salem DS, Shouman SA, Badr Y (2019) Laser-triggered release of drug encapsulated in chitosan nanoparticles for therapy of hepatocellular carcinoma. Colloid Nanopart Biomed Appl 10892:107. https://doi.org/10.1117/12.2508884

  32. Wang F, Li J, Tang X, Huang K, Chen L (2020) Polyelectrolyte three layer nanoparticles of chitosan/dextran sulfate/chitosan for dual drug delivery. Colloids Surf B Biointerfaces 190:110925. https://doi.org/10.1016/j.colsurfb.2020.110925

    Article  CAS  PubMed  Google Scholar 

  33. Samy M, Abd El-Alim SH, Amin A, Ayoub MM (2020) Formulation, characterization and in vitro release study of 5-fluorouracil loaded chitosan nanoparticles. Int J Biol Macromol 156:783. https://doi.org/10.1016/j.ijbiomac.2020.04.112

    Article  CAS  PubMed  Google Scholar 

  34. Chaturvedi K, Ganguly K, More UA, Reddy KR, Dugge T, Naik B, Aminabhavi TM, Noolvi MN (2019) Natural polysaccharides in drug delivery and biomedical applications. Elsevier

  35. Mousavi SR, Zamani MH, Estaji S, Tayouri MI, Arjmand M, Jafari SH, Nouranian S, Khonakdar HA (2022) Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies. J Mater Sci. https://doi.org/10.1007/s10853-021-06854-6

    Article  Google Scholar 

  36. Jain D, Bar-Shalom D (2014) Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 40(12):1576. https://doi.org/10.3109/03639045.2014.917657

    Article  CAS  PubMed  Google Scholar 

  37. Nguyen C-H, Banh K-S, Dang C-H, Nguyen C-H, Nguyen T-D (2022) β-cyclodextrin/alginate nanoparticles encapsulated 5-fluorouracil as an effective and safe anticancer drug delivery system. Arab J Chem 15(6):103814. https://doi.org/10.1016/j.arabjc.2022.103814

    Article  CAS  Google Scholar 

  38. Dalmoro A, Sitenkov AY, Cascone S, Lamberti G, Barba AA, Moustafine RI (2017) Hydrophilic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method. Int J Pharm 518(1–2):50. https://doi.org/10.1016/j.ijpharm.2016.12.056

    Article  CAS  PubMed  Google Scholar 

  39. Azhar FF, Olad A (2014) A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginate–chitosan/montmorillonite nanocomposite systems. Appl Clay Sci 101:288. https://doi.org/10.1016/j.clay.2014.09.004

    Article  CAS  Google Scholar 

  40. Phoeung T, Spanedda MV, Roger E, Heurtault B, Fournel S, Reisch A, Mutschler A, Perrin-Schmitt F, Hemmerle J, Collin D (2017) Alginate/chitosan compact polyelectrolyte complexes: a cell and bacterial repellent material. Chem Mater 29(24):10418. https://doi.org/10.1021/acs.chemmater.7b03863

    Article  CAS  Google Scholar 

  41. Zhang T, Li G, Guo L, Chen H (2012) Synthesis of thermo-sensitive CS-g-PNIPAM/CMC complex nanoparticles for controlled release of 5-FU. Int J Biol Macromol 51(5):1109. https://doi.org/10.1016/j.ijbiomac.2012.08.033

    Article  CAS  PubMed  Google Scholar 

  42. Ježková M, Jelínek P, Marelja O, Trunov D, Jarošová M, Slouka Z, Šoóš M (2022) The preparation of mono-and multicomponent nanoparticle aggregates with layer-by-layer structure using emulsion templating method in microfluidics. Chem Eng Sci 247:117084. https://doi.org/10.1016/j.ces.2021.117084

    Article  CAS  Google Scholar 

  43. Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906. https://doi.org/10.1021/nl801736q

    Article  CAS  PubMed  Google Scholar 

  44. Lari AS, Khatibi A, Zahedi P, Ghourchian H (2021) Microfluidic-assisted production of poly (ɛ-caprolactone) and cellulose acetate nanoparticles: effects of polymers, surfactants, and flow rate ratios. Polym Bull 78(10):5449. https://doi.org/10.1007/s00289-020-03367-1

    Article  CAS  Google Scholar 

  45. Siyawamwaya M, Choonara YE, Bijukumar D, Kumar P, Du Toit LC, Pillay V (2015) A review: overview of novel polyelectrolyte complexes as prospective drug bioavailability enhancers. Int J Polym Mater Polym Biomater 64(18):955. https://doi.org/10.1080/00914037.2015.1038816

    Article  CAS  Google Scholar 

  46. Ghasemi Toudeshkchouei M, Zahedi P, Shavandi A (2020) Microfluidic-Assisted Preparation of 5-Fluorouracil-Loaded PLGA Nanoparticles as a Potential System for Colorectal Cancer Therapy. Materials 13(7):1483. https://doi.org/10.3390/ma13071483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fonseca LR, Santos TP, Czaikoski A, Cunha RL (2022) Microfluidics-based production of chitosan-gellan nanocomplexes encapsulating caffeine. Food Res Int 151:110885

    Article  CAS  PubMed  Google Scholar 

  48. He T, Wang W, Chen B, Wang J, Liang Q, Chen B (2020) 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr Polym 236:116094. https://doi.org/10.1016/j.carbpol.2020.116094

    Article  CAS  PubMed  Google Scholar 

  49. Lababidi N, Sigal V, Koenneke A, Schwarzkopf K, Manz A, Schneider M (2019) Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration. Beilstein J Nanotechnol 10(1):2280. https://doi.org/10.3762/bjnano.10.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang H, Liu D, Shahbazi MA, Mäkilä E, Herranz-Blanco B, Salonen J, Hirvonen J, Santos HA (2014) Fabrication of a multifunctional Nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv Mater 26(26):4497. https://doi.org/10.1002/adma.201400953

    Article  CAS  PubMed  Google Scholar 

  51. Thanki K, Kushwah V, Jain S (2015) Recent advances in tumor targeting approaches. Target Drug Deliv. https://doi.org/10.1007/978-3-319-11355-5_2

    Article  Google Scholar 

  52. Singhvi G, Singh M (2011) In-vitro drug release characterization models. Int J Pharm Stud Res 2(1):77

    Google Scholar 

  53. Zafar K, Zia KM, Alzhrani RM, Almalki AH, Alshehri S (2022) Biocompatibility and Hemolytic Activity Studies of Synthesized Alginate-Based Polyurethanes. Polymers 14(10):2091. https://doi.org/10.3390/polym14102091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ullah S, Azad AK, Nawaz A, Shah KU, Iqbal M, Albadrani GM, Al-Joufi FA, Sayed AA, Abdel-Daim MM (2022) 5-Fluorouracil-loaded folic-acid-fabricated chitosan nanoparticles for site-targeted drug delivery cargo. Polymers 14(10):2010. https://doi.org/10.3390/polym14102010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen L, Zang F, Wu H, Li J, Xie J, Ma M, Gu N, Zhang Y (2018) Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs. Nanoscale 10(4):1788. https://doi.org/10.1039/C7NR08319J

    Article  CAS  PubMed  Google Scholar 

  56. Liu X, Jiang J, Meng H (2019) Transcytosis-An effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery. Theranostics 9(26):8018. https://doi.org/10.7150/thno.38587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leung MH, Shen AQ (2018) Microfluidic assisted nanoprecipitation of PLGA nanoparticles for curcumin delivery to leukemia jurkat cells. Langmuir 34(13):3961. https://doi.org/10.1021/acs.langmuir.7b04335

    Article  CAS  PubMed  Google Scholar 

  58. Dashtimoghadam E, Mirzadeh H, Taromi FA, Nyström B (2013) Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer 54(18):4972. https://doi.org/10.1016/j.polymer.2013.07.022

    Article  CAS  Google Scholar 

  59. Majedi FS, Hasani-Sadrabadi MM, Emami SH, Shokrgozar MA, VanDersarl JJ, Dashtimoghadam E, Bertsch A, Renaud P (2013) Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab Chip 13(2):204. https://doi.org/10.1039/C2LC41045A

    Article  CAS  PubMed  Google Scholar 

  60. Abstiens K, Goepferich AM (2019) Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles. J Drug Deliv Sci Technol 49:433. https://doi.org/10.1016/j.jddst.2018.12.009

    Article  CAS  Google Scholar 

  61. Katuwavila NP, Perera A, Dahanayake D, Karunaratne V, Amaratunga GA, Karunaratne DN (2016) Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system. Int J Pharm 513(1–2):404. https://doi.org/10.1016/j.ijpharm.2016.09.053

    Article  CAS  PubMed  Google Scholar 

  62. Yang D, Gao K, Bai Y, Lei L, Jia T, Yang K, Xue C (2021) Microfluidic synthesis of chitosan-coated magnetic alginate microparticles for controlled and sustained drug delivery. Int J Biol Macromol 182:639. https://doi.org/10.1016/j.ijbiomac.2021.04.057

    Article  CAS  PubMed  Google Scholar 

  63. Narayan R, Gadag S, Mudakavi RJ, Garg S, Raichur AM, Nayak Y, Kini SG, Pai KSR, Nayak UY (2021) Mesoporous silica nanoparticles capped with chitosan-glucuronic acid conjugate for pH-responsive targeted delivery of 5-fluorouracil. J Drug Deliv Sci Technol 63:102472. https://doi.org/10.1016/j.jddst.2021.102472

    Article  CAS  Google Scholar 

  64. Li S, Dai W, Yin Z-Z, Gao J, Wu D, Kong Y (2020) Synthesis of oxidized pullulan coated mesoporous silica for pH-sensitive drug delivery. Eur Polym J 122:109399. https://doi.org/10.1016/j.eurpolymj.2019.109399

    Article  CAS  Google Scholar 

  65. Tığlı Aydın RS, Pulat M (2012) 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater. https://doi.org/10.1155/2012/313961

    Article  Google Scholar 

  66. Chiesa E, Dorati R, Modena T, Conti B, Genta I (2018) Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles. Int J Pharm 536(1):165. https://doi.org/10.1016/j.ijpharm.2017.11.044

    Article  CAS  PubMed  Google Scholar 

  67. Mannu R, Karthikeyan V, Velu N, Arumugam C, Roy VA, Gopalan A-I, Saianand G, Sonar P, Lee K-P, Kim W-J (2021) Polyethylene glycol coated magnetic nanoparticles: Hybrid nanofluid formulation, properties and drug delivery prospects. Nanomater 11(2):440. https://doi.org/10.3390/nano11020440

    Article  CAS  Google Scholar 

  68. Concha L, Resende Pires AL, Moraes AM, Mas-Hernández E, Berres S, Hernandez-Montelongo J (2022) Cost function analysis applied to different kinetic release models of Arrabidaea chica verlot extract from chitosan/alginate membranes. Polymers 14(6):1109. https://doi.org/10.3390/polym14061109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Council of University of Tehran for the financial support in this work.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Hossein Zamani: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing-original draft. Alireza Khatibi: Formal analysis, Data curation, Investigation, Methodology, Writing-review & editing. Beeta Tavana: Formal analysis, Data curation, Investigation, Methodology, Writing-review & editing. Payam Zahedi: Formal analysis, Funding acquisition, Investigation, Project administration, Supervision, Writing-review & editing. Shayesteh Aghamohammadi: Investigation, Methodology, Writing-review & editing.

Corresponding author

Correspondence to Payam Zahedi.

Ethics declarations

Competing interest

The authors notify that there are no personal relationships or conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, M.H., Khatibi, A., Tavana, B. et al. Characterization of drug-loaded alginate-chitosan polyelectrolyte nanoparticles synthesized by microfluidics. J Polym Res 30, 86 (2023). https://doi.org/10.1007/s10965-023-03468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03468-1

Keyword

Navigation