Skip to main content
Log in

A novel polyamidoamine dendrimer based nano-carrier for oral delivery of imatinib

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Designing and developing efficient and non-toxic drug delivery systems is an exciting subject in pharmacology and cancer therapy. In this study, we have developed a nano-carrier based on the third generation of polyamidoamine (PAMAM-G3) dendrimer, grafted with polyethylene glycol (PEG 4000) and folic acid (FA) for oral delivery of Imatinib (IM) with sustained release. The synthesized drug carrier and the manufactured nano-complexes (two different amounts of IM encapsulated by the drug carrier) were characterized using FTIR and 1HNMR spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic light scattering (DLS), and zeta potential analysis. The SEM images showed a typical smooth brittle structure for nano-complexes and, DSC thermograms confirmed the purity and integrity of both formulations. The average size of nano-complexes using DLS analysis was estimated to be around 100 nm with a zeta potential of + 0.2 mV. The drug loading efficiency and the drug release of nano-complexes were also studied in-vitro at pH 7.4 using UV–Vis spectroscopy. The manufactured nano carrier showed efficient entrapment of IM drug, and a sustained release was observed for nano-complexes in physiological conditions. Both formulations were effective against the human colorectal cancer cell line (SW480) and the human lung cancer cell line (A549) in the in-vitro cellular growth inhibition method. The best result was acquired against the cell line SW480 with the IC50 value of 38.88 ± 0.13 (μg.mL−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mittal P, Saharan A, Verma R, Altalbawy FMA, Alfaidi MA, Batiha GE, Akter W, Gautam RK, Uddin MS, Rahman MS (2021) Dendrimers: A new race of pharmaceutical nanocarriers. Biomed Res Int 15:8844030. https://doi.org/10.1155/2021/8844030

    Article  CAS  Google Scholar 

  2. Castro RI, Forero-Doria O, Guzmán L (2018) Perspectives of dendrimer-based nanoparticles in cancer therapy. An Acad Bras Cienc 90:2331–2346. https://doi.org/10.1590/0001-3765201820170387

    Article  CAS  Google Scholar 

  3. Saluja V, Mishra Y, Mishra V, Giri N, Nayak P (2021) Dendrimers based cancer nanotheranostics: An overview. Int J Pharm 600:120485. https://doi.org/10.1016/j.ijpharm.2021.120485

    Article  CAS  Google Scholar 

  4. Li Y, He H, Lu W, Jia X (2017) A poly (amidoamine) dendrimer-based drug carrier for delivering DOX to gliomas cells. RSC Adv 7:15475. https://doi.org/10.1039/C7RA00713B

    Article  CAS  Google Scholar 

  5. Zong H, Thomas TP, Lee KH, Desai AM, Li MH, Kotlyar A, Zhang Y, Leroueil PR, Gam JJ, Banaszak Holl MM, Baker JR Jr (2012) Bifunctional PAMAM dendrimer conjugates of folic acid and methotrexate with defined ratio. Biomacromol 13:982–991. https://doi.org/10.1021/BM201639C/SUPPL

    Article  CAS  Google Scholar 

  6. Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM (2020) Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res Int 27(16):19151–19168. https://doi.org/10.1007/s11356-019-05211-0

    Article  CAS  Google Scholar 

  7. Crampton HL, Simanek EE (2007) Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polym Int 56:489–496. https://doi.org/10.1002/pi.2230

    Article  CAS  Google Scholar 

  8. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  9. Kishore C, Bhadra P (2021) Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur J Pharmacol 893:173819. https://doi.org/10.1016/j.ejphar.2020.173819

    Article  CAS  Google Scholar 

  10. Mundhenke C, Weigel MT, Sturner KH, Roesel F, Meinhold-Heerlein I, Bauerschlag DO, Schem C, Hilpert F, Jonat W, Maass N (2008) Novel treatment of ovarian cancer cell lines with Imatinib mesylate combined with Paclitaxel and Carboplatin leads to receptor-mediated antiproliferative effects. J Cancer Res Clin Oncol 134(12):1397–1405. https://doi.org/10.1007/s00432-008-0408-0

    Article  CAS  Google Scholar 

  11. Waller CF (2010) Imatinib Mesylate. In: Martens U (eds) Small Molecules in Oncology, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01222-8_1

  12. Hasandoost L, Akbarzadeh A, Attar H, Heydarinasab A (2017) In-vitro effect of imatinib mesylate loaded on poly butyl cyanoacrylate nanoparticles on leukemia cell line K562. Artif Cells Nanomed Biotechnol 45(3):665–669. https://doi.org/10.1080/21691401.2016.1175444

    Article  CAS  Google Scholar 

  13. Carrasco-Esteban E, Domínguez-Rullán JA, Barrionuevo-Castillo P, Pelari-Mici L, Leaman O, Sastre-Gallego S, López-Campos F (2021) Current role of nanoparticles in the treatment of lung cancer. J Clin Transl Res 7(2):140–155. https://doi.org/10.18053/jctres.07.202102.005

    Article  CAS  Google Scholar 

  14. Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z (2012) Nanomedicine of tyrosine kinase inhibitors. Theranostics. 11(4):1546–1567. https://doi.org/10.7150/thno.48662

    Article  CAS  Google Scholar 

  15. Karimi M, Karimian K, Heli H (2020) A nanoemulsion-based delivery system for imatinib and in vitro anticancer efficacy. Braz J Pharm Sci. https://doi.org/10.1590/s2175-97902020000118973

    Article  Google Scholar 

  16. Marslin G, Revina AM, Khandelwal VK, Balakumar K, Prakash J, Franklin G, Sheeba CJ (2015) Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity. Int J Nanomed 10:3163–3170. https://doi.org/10.2147/IJN.S75962

    Article  CAS  Google Scholar 

  17. Singh P, Gupta U, Asthana A, Jain NK (2008) Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor-bearing mice. Bioconjug Chem 19(11):2239–2252. https://doi.org/10.1021/bc800125u

    Article  CAS  Google Scholar 

  18. Wang Y, Guo R, Cao X, Shen M, Shi X (2011) Encapsulation of 2-methoxyestradiol within multifunctional poly (amidoamine) dendrimers for targeted cancer therapy. Biomaterials 32(12):3322–3329. https://doi.org/10.1016/j.biomaterials.2010.12.060

    Article  CAS  Google Scholar 

  19. Sideratou Z, Kontoyianni C, Drossopoulou GI, Paleos CM (2010) Synthesis of folate functionalized PEGylated poly (propylene imine) dendrimer as prospective targeted drug delivery system. Bioorg Med Chem Lett 20:6513–6517. https://doi.org/10.1016/j.bmcl.2010.09.058

    Article  CAS  Google Scholar 

  20. Zalipsky S, Gilon C, Zilkha A (1983) Attachment of drugs to polyethylene glycols. Eur Polym J 19(12):1177–1183. https://doi.org/10.1016/0014-3057(83)90016-2

    Article  CAS  Google Scholar 

  21. Arima H, Yoshimatsu A, Ikeda H, Ohyama A, Motoyama K, Higashi T, Tsuchiya A, Niidome T, Katayama Y, Hattori K, Takeuchi T (2012) Folate-PEG-appended dendrimer conjugate with α-cyclodextrin as a novel cancer cell-selective siRNA delivery carrier. Mol Pharm 9(9):2591–2604. https://doi.org/10.1021/mp300188f

    Article  CAS  Google Scholar 

  22. Yang H, Morris JJ, Lopina ST (2004) Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J Colloid Interface Sci 273(1):148–154. https://doi.org/10.1016/j.jcis.2003.12.023

    Article  CAS  Google Scholar 

  23. van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MM (1994) A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 174:311–320. https://doi.org/10.1016/0022-1759(94)90034-5

    Article  Google Scholar 

  24. El-Hammadi MM, Delgado AV, Melguizo C, Prados JC, Arias JL (2017) Folic acid decorated and PEGylated PLGA nanoparticles for improving the antitumor activity of 5-fluorouracil. Int J Pharm 516:61–70. https://doi.org/10.1016/j.ijpharm.2016.11.012

    Article  CAS  Google Scholar 

  25. Li X, Li F, Wang F, Li J, Lin C, Jianxin Du (2018) Resveratrol inhibits the proliferation of A549 cells by inhibiting the expression of COX-2. Onco Targets Ther 11:2981–2989. https://doi.org/10.2147/OTT.S157613

    Article  Google Scholar 

  26. Zhang XD, Wu D, Shen X, Liu PX, Yang N, Zhao B, Zhang H, Sun YM, Zhang LA, Fan FY (2011) Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomedicine 6:2071–2081. https://doi.org/10.2147/IJN.S21657

    Article  CAS  Google Scholar 

  27. Rasmussen MK, Pedersen JN, Marie R (2020) Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun 11:2337. https://doi.org/10.1038/s41467-020-15889-3

    Article  CAS  Google Scholar 

  28. Banik BL, Fattahi P, Brown JL (2016) Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:271–299. https://doi.org/10.1002/wnan.1364

    Article  Google Scholar 

  29. Luong D, Kesharwani P, Killinger BA, Moszczynska A, Sarkar FH, Padhye S, Rishi AK, Iyer AK (2016) Solubility enhancement and targeted delivery of a potent anticancer flavonoid analogue to cancer cells using ligand decorated dendrimer nanoarchitectures. J Colloid Interface Sci 484:33–43. https://doi.org/10.1016/j.jcis.2016.08.061

    Article  CAS  Google Scholar 

  30. Slobozeanu AE, Bejan SE, Tudor IA, Mocioiu AM, Motoc AM, Romero-Sanchez MD, Botan M, Catalin CG, Madalina CL, Piticescu RR (2021) A review on differential scanning calorimetry as a tool for thermal assessment of nanostructured coatings. Manuf Rev. https://doi.org/10.1051/mfreview/2020038

    Article  Google Scholar 

  31. Wang SH, Lee CW, Chiou A, Wei PK (2010) Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnol 8:33. https://doi.org/10.1186/1477-3155-8-33

    Article  CAS  Google Scholar 

  32. Farshbaf M, Davaran S, Zarebkohan A, Annabi N, Akbarzadeh A, Salehi R (2018) Significant role of cationic polymers in drug delivery systems. Artif Cells Nanomed Biotechnol 46:1872–1891. https://doi.org/10.1080/21691401.2017.1395344

    Article  CAS  Google Scholar 

  33. Kesharwani P, Mishra V, Jain NK (2015) Generation dependent hemolytic profile of folate engineered poly(propyleneimine) dendrimer. J Drug Delivery Sci Technol 28:1–6. https://doi.org/10.1016/j.jddst.2015.04.006

    Article  CAS  Google Scholar 

  34. Varshosaz J, Fardshouraki S, Mirian M, Safaeian L, Jandaghian S, Taymouri S (2020) Encapsulation of imatinib in targeted KIT-5 nanoparticles for reducing its cardiotoxicity and hepatotoxicity. Anticancer Agents Med Chem 20(16):1966–1980. https://doi.org/10.2174/1871520620666200619174323

    Article  CAS  Google Scholar 

  35. Gupta B, Poudel BK, Pathak S, Tak JW, Lee HH, Jeong JH, Choi HG, Yong CS, Kim JO (2016) Effects of formulation variables on the particle size and drug encapsulation of Imatinib-loaded solid lipid nanoparticles. AAPS Pharm Sci Tech 17:652–662. https://doi.org/10.1208/s12249-015-0384-z

    Article  CAS  Google Scholar 

  36. Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T (2018) Tumor targeting via EPR: Strategies to enhance patient responses. Adv drug deliv rev 130:17–38. https://doi.org/10.1016/j.addr.2018.07.007

    Article  CAS  Google Scholar 

  37. Assaraf YG, Leamon CP, Reddy JA (2014) The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat 17:89–95. https://doi.org/10.1016/j.drup.2014.10.002

    Article  Google Scholar 

  38. Wei X, Liao J, Davoudi Z, Zheng H, Chen J, Li D, Xiong X, Yin Y, Yu X, Xiong J, Wang Q (2018) Folate receptor-targeted and GSH-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia. Mar Drugs 16(11):439. https://doi.org/10.3390/md16110439

    Article  CAS  Google Scholar 

  39. Corona G, Giannini F, Fabris M, Toffoli G, Biocchi M (1998) Role of folate receptor and reduced folate carrier in the transport of 5-methyltetrahydrofolic acid in human ovarian carcinoma cells. Int J Cancer 75:125–133. https://doi.org/10.1002/(sici)1097-0215(19980105)75:1%3c125::aid-ijc19%3e3.0.co;2-f

    Article  CAS  Google Scholar 

  40. Yang H, Kao WJ (2007) Synthesis and characterization of nanoscale dendritic RGD clusters for potential applications in tissue engineering and drug delivery. Int J Nanomed 2:89–99. https://doi.org/10.2147/nano.2007.2.1.89

    Article  CAS  Google Scholar 

  41. Cortese B, D’Amone S, Gigli G, Palama IE (2015) Sustained anti-BCR-ABL activity with pH responsive imatinib mesylate loaded PCL nanoparticles in CML cells. Med Chem Comm 6:212–221. https://doi.org/10.1039/C6MD90031C

    Article  CAS  Google Scholar 

  42. Fotouhi P, Sohrabi S, Nosrati N, Zaman Vaziri A, Khaleghi S, Narmani A, Jafari H, Mohammadnejad J (2021) Surface modified and rituximab functionalized PAMAM G4 nanoparticle for targeted imatinib delivery to leukemia cells: In vitro studies. Proc Biochem 111:221–229. https://doi.org/10.1016/j.procbio.2021.09.006

    Article  CAS  Google Scholar 

  43. Kassem MA, El-Sawy HS, Abd-Allah FI, Abdelghany TM, El-Say KM (2017) Maximizing the therapeutic efficacy of imatinib mesylate-loaded niosomes on human colon adenocarcinoma using box-behnken design. J Pharm Sci 106:111–122. https://doi.org/10.1016/j.xphs.2016.07.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Jamzad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhari, S., Jamzad, M., Nouri, A. et al. A novel polyamidoamine dendrimer based nano-carrier for oral delivery of imatinib. J Polym Res 29, 523 (2022). https://doi.org/10.1007/s10965-022-03359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03359-x

Keywords

Navigation