Skip to main content
Log in

Controlled synthesis of hierarchical BiOCl nanostructure with exposed {010} facets to yield enhanced photocatalytic performance for PMMA deterioration

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, we reported a facile and efficient method to prepare Bismuth-oxy-chloride (BiOCl) 3D-hierarchical nanostructure (HNs) with tunable exposed {010} facets by controlling [H+] for photocatalytic activity under visible light. Subsequently, this nanostructure with different weight percentage (5, 10, and 15wt%) was incorporated into a Polymethymethacrylate (PMMA) matrix to create degradable nanocomposites using the solution casting technique. After irradiation, SEM images confirmed that the as-synthesized flower-shaped BiOCl nanostructure aided in chain scission, side-group abstraction, and the formation of free radicals on the surface of PMMA, resulting in cracked, brittle, and broken BiOCl/PMMA nanocomposites. The observed diffractrogram from XRD revealed that the broad peaks of PMMA vanished, indicating that the deterioration of the polymer matrix. Furthermore, a 20% fall in char output and a 35% increase in crystallinity of visible light-exposed nanocomposites reduce the flame retardancy of PMMA, causing exceptional plastic deterioration. The poorer thermal resistance against thermal degradation is also reflected by the lower value of the calculated activation energy of irradiated samples. Reorganization in the macromolecular chains of PMMA into the structure after photo-irradiation exhibits a lower melting point and glass transition temperature values than shown through DSC scans. BiOCl/PMMA nanocomposites were subjected to an EPR experiment to examine the types of radicals released on the PMMA surface as a result of visible light-induced reactions. The production of carbonyl groups analyzed through FTIR reflects the better photocatalytic activity of BiOCl and is a measure of good degradation. For achieving decent results, the better dispersion of nanoparticles into a polymer matrix without aggregation is required. In this context, the stability of the photocatalyst has also been examined, and it is concluded that 10 wt% BiOCl stood better in stability, whereas beyond this aggregation inhibits photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Tilman D, Clark M, Williams DR, Kimmel K, Polasky S, Packer C (2017) Future threats to biodiversity and pathways to their prevention. Nature 546(7656):73–81

    Article  CAS  PubMed  Google Scholar 

  2. Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5(1):6

    Article  Google Scholar 

  3. Kulkarni A, Dasari H (2018) Current status of methods used in degradation of polymers: A review. In MATEC Web Conf 144:2023

  4. Moharir RV, Kumar S (2019) Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. J Clean Prod 208:65–76

    Article  CAS  Google Scholar 

  5. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E (2008) Polymer biodegradation: Mechanisms and estimation techniques–A review. Chemosphere 73(4):429–442

    Article  CAS  PubMed  Google Scholar 

  6. Kanakaraju D, Glass BD, Oelgemöller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J Environ Manage 219:189–207

    Article  CAS  PubMed  Google Scholar 

  7. Joseph CG, Puma GL, Bono A, Krishnaiah D (2009) Sonophotocatalysis in advanced oxidation process: a short review. Ultrason Sonochem 16(5):583–589

    Article  CAS  PubMed  Google Scholar 

  8. Kumar A, Pandey G (2017) A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater Sci Eng Int J 1:106–114

    Google Scholar 

  9. Kumar SG, Rao KSRK (2017) Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl Surf Sci 391:124–148

    Article  CAS  Google Scholar 

  10. Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 37(1):1–15

    Article  CAS  Google Scholar 

  11. Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. Elsevier

  12. Nakata K, Fujishima A (2012) TiO2 photocatalysis: Design and applications. J Photochem Photobiol C Photochem Rev 13(3):169–189

    Article  CAS  Google Scholar 

  13. Cantarella M, Sanz R, Buccheri MA, Romano L, Privitera V (2016) PMMA/TiO2 nanotubes composites for photocatalytic removal of organic compounds and bacteria from water. Mater Sci Semicond Process 42:58–61

    Article  CAS  Google Scholar 

  14. Miao Y, Zhang H, Yuan S, Jiao Z, Zhu X (2016) Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. J Colloid Interface Sci 462:9–18

    Article  CAS  PubMed  Google Scholar 

  15. Xiong J, Cheng G, Qin F, Wang R, Sun H, Chen R (2013) Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chem Eng J 220:228–236

    Article  CAS  Google Scholar 

  16. Lei Y, Wang G, Song S, Fan W, Zhang H (2009) Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. CrystEngComm 11(9):1857–1862

    Article  CAS  Google Scholar 

  17. Ganose AM, Cuff M, Butler KT, Walsh A, Scanlon DO (2016) Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem Mater 28(7):1980–1984. https://doi.org/10.1021/acs.chemmater.6b00349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guerrero M et al (2013) 3D hierarchically porous Cu–BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties. Nanoscale 5(24):12542–12550

    Article  CAS  PubMed  Google Scholar 

  19. Lotnyk D, Komanický V, Feher A, Bunda V (2016) Influence of the reduced dimensionality on the thermodynamical and electrical properties of photosensitive BiOX (X= Cl, Br, and I) semiconductors. Appl Phys Lett 109(24):242106

    Article  Google Scholar 

  20. Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J Am Chem Soc 136(25):8839–8842

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Niu CG, Xie GX, Wen XJ, Zhang XG, Zeng GM (2017) Controlled Growth of BiOCl with Large 010 Facets for Dye Self-Photosensitization Photocatalytic Fuel Cells Application. ACS Sustain Chem Eng 5(6):4619–4629. https://doi.org/10.1021/acssuschemeng.6b03150

    Article  CAS  Google Scholar 

  22. Wu S et al (2010) Synthesis and photocatalytic properties of BiOCl nanowire arrays. Mater Lett 64(2):115–118

    Article  CAS  Google Scholar 

  23. Deng H, Wang J, Peng Q, Wang X, Li Y (2005) Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes. Chem Eur J 11(22):6519–6524

    Article  CAS  PubMed  Google Scholar 

  24. Xiong J, Cheng G, Li G, Qin F, Chen R (2011) Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Adv 1(8):1542–1553

    Article  CAS  Google Scholar 

  25. Pare B, Sarwan B, Jonnalagadda SB (2012) The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst. J Mol Struct 1007:196–202. https://doi.org/10.1016/j.molstruc.2011.10.046

    Article  CAS  Google Scholar 

  26. Song JM, Mao CJ, Niu HL, Shen YH, Zhang SY (2010) Hierarchical structured bismuth oxychlorides: Self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties. Cryst Eng Comm 12(11):3875–3881. https://doi.org/10.1039/c003497p

    Article  CAS  Google Scholar 

  27. Xiong J, Jiao Z, Lu G, Ren W, Ye J, Bi Y (2013) Facile and rapid oxidation fabrication of BiOCl hierarchical nanostructures with enhanced photocatalytic properties. Chem Eur J 19(29):9472–9475

    Article  CAS  PubMed  Google Scholar 

  28. Zhu L-P, Liao G-H, Bing N-C, Wang L-L, Yang Y, Xie H-Y (2010) Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization. Cryst Eng Comm 12(11):3791–3796

    Article  CAS  Google Scholar 

  29. Ding L, Wei R, Chen H, Hu J, Li J (2015) Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness. Appl Catal B Environ 172–173:91–99. https://doi.org/10.1016/j.apcatb.2015.02.019

  30. Jiang J, Zhao K, Xiao X, Zhang L (2012) Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc 134(10):4473–4476

    Article  CAS  PubMed  Google Scholar 

  31. Qian NX et al (2020) A facile method to tune the crystal lattice/morphology/electronic state/photocatalytic performance of BiOCl. J Alloys Compd 815:1–9. https://doi.org/10.1016/j.jallcom.2019.152490

  32. Shobhana E (2012) X-Ray diffraction and UV-visible studies of PMMA thin films. Int J Mod Eng Res 2(3):1092–1095

    Google Scholar 

  33. Jiang S, Peng X, Hu Y, Gui Z (2015) Facile synthesis of a rose-like BiOCl assembled from nanosheets and its thermal-property application in polymers. Mater Lett 161:561–564

    Article  CAS  Google Scholar 

  34. Li H, Li J, Ai Z, Jia F, Zhang L (2018) Oxygen Vacancy-Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives. Angew Chemie - Int Ed 57(1):122–138. https://doi.org/10.1002/anie.201705628

    Article  CAS  Google Scholar 

  35. Hao HY, Xu YY, Liu P, Zhang GY (2015) BiOCl nanostructures with different morphologies: Tunable synthesis and visible-light-driven photocatalytic properties. Chinese Chem Lett 26(1):133–136. https://doi.org/10.1016/j.cclet.2014.11.022

    Article  CAS  Google Scholar 

  36. Pitsa D, Danikas MG (2011) Interfaces features in polymer nanocomposites: A review of proposed models. NANO 6(06):497–508

    Article  CAS  Google Scholar 

  37. Hezma AM, Rajeh A, Mannaa MA (2019) An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids Surfaces A Physicochem Eng Asp 581:123821. https://doi.org/10.1016/j.colsurfa.2019.123821

  38. Morsi MA, Abdelghany AM (2017) UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater Chem Phys 201(September):100–112. https://doi.org/10.1016/j.matchemphys.2017.08.022

    Article  CAS  Google Scholar 

  39. Kamrannejad MM, Hasanzadeh A, Nosoudi N, Mai L, Babaluo AA (2014) Photocatalytic degradation of polypropylene/TiO2 nano-composites. Mater Res 17:1039–1046

    Article  Google Scholar 

  40. Tian J, Chen Z, Deng X, Sun Q, Sun Z, Li W (2018) Improving visible light driving degradation of norfloxacin over core-shell hierarchical BiOCl microspherical photocatalyst by synergistic effect of oxygen vacancy and nanostructure. Appl Surf Sci 453:373–382

    Article  CAS  Google Scholar 

  41. Cao S, Guo C, Lv Y, Guo Y, Liu Q (2009) A novel BiOCl film with flowerlike hierarchical structures and its optical properties. Nanotechnology 20(27):275702

    Article  PubMed  Google Scholar 

  42. Cheng G, Xiong J, Stadler FJ (2013) Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity. New J Chem 37(10):3207–3213. https://doi.org/10.1039/c3nj00413a

    Article  CAS  Google Scholar 

  43. Kaczmarek H (1996) Changes to polymer morphology caused by u.v. irradiation: 1. Surface damage. Polymer (Guildf) 37(2):189–194. https://doi.org/10.1016/0032-3861(96)81086-X

    Article  CAS  Google Scholar 

  44. Sarwan B, Acharya AD, Kaur S, Pare B (2020 )Visible light photocatalytic deterioration of polystyrene plastic using supported BiOCl nanoflower and nanodisk. Eur Polym J 134:109793. https://doi.org/10.1016/j.eurpolymj.2020.109793

  45. Uheida A, Mejía HG, Abdel-Rehim M, Hamd W, Dutta J (2021) Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J Hazard Mater 406:124299. https://doi.org/10.1016/j.jhazmat.2020.124299

  46. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC (2020) An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res 27(3):2522–2565

    Article  CAS  Google Scholar 

  47. Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers. Thermochim Acta 523(1–2):1–24. https://doi.org/10.1016/j.tca.2011.06.010

    Article  CAS  Google Scholar 

  48. Paswan SK et al (2021) Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J Phys Chem Solids 151:109928. https://doi.org/10.1016/j.jpcs.2020.109928

  49. Chiang CL, Ma CCM (2002) Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol-gel method. Eur Polym J 38(11):2219–2224. https://doi.org/10.1016/S0014-3057(02)00123-4

    Article  CAS  Google Scholar 

  50. van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer (Guildf) 16(8):615–620. https://doi.org/10.1016/0032-3861(75)90157-3

    Article  Google Scholar 

  51. Mishra R, Tripathy SP, Fink D, Dwivedi KK (2005) Activation energy of thermal decomposition of proton irradiated polymers. Radiat Meas 40(2–6):754–757. https://doi.org/10.1016/j.radmeas.2005.02.022

    Article  CAS  Google Scholar 

  52. El-Zaher NA, Melegy MS, Guirguis OW (2014) Thermal and Structural Analyses of PMMA/TiO<sub>2</sub> Nanoparticles Composites. Nat Sci 06(11):859–870. https://doi.org/10.4236/ns.2014.611083

    Article  CAS  Google Scholar 

  53. Da Silva KIM, Santos MJL, Gil MP (2015) Dependence of the photodegradation rate on the crystalline portion of PE films obtained through in situ polymerization in the presence of TiO2 nanospheres, nanoribbons and microspheres. Polym Degrad Stab 112:78–85. https://doi.org/10.1016/j.polymdegradstab.2014.12.004

    Article  CAS  Google Scholar 

  54. Rojas K et al (2019) Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles. Compos Part B Eng 172(January):173–178. https://doi.org/10.1016/j.compositesb.2019.05.054

    Article  CAS  Google Scholar 

  55. Nabiyev AA et al (2020) Nano-ZrO2 filled high-density polyethylene composites: Structure, thermal properties, and the influence γ-irradiation. Polym Degrad Stab 171:109042. https://doi.org/10.1016/j.polymdegradstab.2019.109042

    Article  CAS  Google Scholar 

  56. Zapata PA, Rabagliati FM, Lieberwirth I, Catalina F, Corrales T (2014) Study of the photodegradation of nanocomposites containing TiO2 nanoparticles dispersed in polyethylene and in poly(ethylene-co-octadecene). Polym Degrad Stab 109:106–114. https://doi.org/10.1016/j.polymdegradstab.2014.06.020

    Article  CAS  Google Scholar 

  57. Zoepfl FJ, Markovic V, Silverman J (1984) Differential Scanning Calorimetry Studies of Irradiated Polyethylene: I. Melting Temperatures and Fusion Endotherms. J Polym Sci A1 22(9):2017–2032. https://doi.org/10.1002/pol.1984.170220907

  58. Djahnit L, Sened N, El-Miloudi K, Lopez-Manchado MA, Haddaoui N (2019) Structural characterization and thermal degradation of poly(methylmethacrylate)/zinc oxide nanocomposites. J Macromol Sci Part A Pure Appl Chem 56(3):189–196. https://doi.org/10.1080/10601325.2018.1563494

  59. Acharya AD et al (2012) Effect of Cd dopant on electrical and optical properties of ZnO thin films prepared by spray pyrolysis route. Thin Solid Films 525:49–55. https://doi.org/10.1016/j.tsf.2012.10.100

    Article  CAS  Google Scholar 

  60. Thomas RT, Sandhyarani N (2013) Enhancement in the photocatalytic degradation of low density polyethylene-TiO2 nanocomposite films under solar irradiation. RSC Adv 3(33):14080–14087. https://doi.org/10.1039/c3ra42226g

    Article  CAS  Google Scholar 

  61. Verma R, Singh S, Dalai MK, Saravanan M, Agrawal VV, Srivastava AK (2017) Photocatalytic degradation of polypropylene film using TiO2-based nanomaterials under solar irradiation. Mater Des 133:10–18. https://doi.org/10.1016/j.matdes.2017.07.042

    Article  CAS  Google Scholar 

  62. Guo HL, Zhu Q, Wu XL, Jiang YF, Xie X, Xu AW (2015) Oxygen deficient ZnO1-x nanosheets with high visible light photocatalytic activity. Nanoscale 7(16):7216–7223. https://doi.org/10.1039/c5nr00271k

    Article  CAS  PubMed  Google Scholar 

  63. Cerrato E, Paganini MC, Giamello E (2020) Photoactivity under visible light of defective ZnO investigated by EPR spectroscopy and photoluminescence. J Photochem Photobiol A Chem 397. https://doi.org/10.1016/j.jphotochem.2020.112531

  64. Šlouf M et al (2018) UV degradation of styrene-butadiene rubber versus high density poly(ethylene) in marine conditions studied by infrared spectroscopy, micro indentation, and electron spin resonance imaging. Polym Degrad Stab 156:132–143. https://doi.org/10.1016/j.polymdegradstab.2018.08.005

    Article  CAS  Google Scholar 

  65. Yang J, Li X, Liu C, Rui E, Wang L (2015) Effects of electron irradiation on LDPE/MWCNT composites. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 365:55–60. https://doi.org/10.1016/j.nimb.2015.04.013

    Article  CAS  Google Scholar 

  66. Dimitrijevic NM, Tepavcevic S, Liu Y, Rajh T, Silver SC, Tiede DM (2013) Nanostructured TiO2/polypyrrole for visible light photocatalysis. J Phys Chem C 117(30):15540–15544. https://doi.org/10.1021/jp405562b

    Article  CAS  Google Scholar 

  67. Cano NF, Ribeiro RB, Munita CS, Watanabe S, Neves EG, Tamanaha EK (2015) Dating and determination of firing temperature of ancient potteries from São Paulo II archaeological site, Brazil by TL and EPR techniques. J Cult Herit 16(3):361–364. https://doi.org/10.1016/j.culher.2014.05.010

    Article  Google Scholar 

  68. Mei J (2021) Photo-induced dye-sensitized BiPO4/BiOCl system for stably treating persistent organic pollutants. Appl Catal B Environ 285:1–11. https://doi.org/10.1016/j.apcatb.2020.11984

    Article  Google Scholar 

  69. Toloman D et al (2021) Visible-light-driven photocatalytic degradation of different organic pollutants using Cu doped ZnO-MWCNT nanocomposites. J Alloys Compd 866:159010. https://doi.org/10.1016/j.jallcom.2021.159010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank Lovely Professional University, Punjab, India for providing all the facilities in order to carry out the research work. Author would like to thank Indian Institute of Technology Jammu, central instrumentation facility for providing the facility to carry out EPR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Deep Acharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Acharya, A.D., Thakur, Y.S. et al. Controlled synthesis of hierarchical BiOCl nanostructure with exposed {010} facets to yield enhanced photocatalytic performance for PMMA deterioration. J Polym Res 29, 466 (2022). https://doi.org/10.1007/s10965-022-03313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03313-x

Keywords

Navigation