Skip to main content
Log in

EPDM/GO composite insulation for anti-migration of plasticizers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To prevent the migration of energetic plasticizers in propellants, Graphene oxide (GO) was added as filler to the ethylene propylene diene monomer (EPDM) insulation composite by mechanical mixing. Then, the anti-migration performance was analyzed by investigating the diffusion of dioctyl sebacate using immersion tests at different temperatures. The diffusion coefficient is in the range of 10–14-10–12 m2/s, and the migration activation energy is about 60 kJ/mol. Compared with pure EPDM, the anti-migration effects of EPDM/GO-5 are increased by 15.68%, 9.23%, 8.81%, and 5.69% at 25 °C, 40 °C, 60 °C, and 80 °C, respectively. Moreover, the composite shows a 58% increase in tensile strength and a 132% improvement in the elongation at break by the addition of 5 phr filler of GO. Meanwhile, the thermal stability of the EPDM insulation is also improved with the addition of GO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guan Y, Li J, Liu Y et al (2018) Influence of different propellant systems on ablation of EPDM insulators in overload state. Acta Astronaut 145:141

    Article  CAS  Google Scholar 

  2. Kumari D, Balakshe R, Banerjee S et al (2012) Energetic plasticizers for gun & rocket propellants. Rev J Chem 2:240

    Article  Google Scholar 

  3. Gao H, Chen F, Cai R et al (2021) The Diffusion of Components from Propellant and Liner at the Interfaces of EPDM Insulation. Propell Explos Pyrot 46:460

    Article  CAS  Google Scholar 

  4. Yang P, He M, Ren X et al (2020) Effect of carbon nanotube on space charge suppression in PP/EPDM/CNT nanocomposites. J Polym Res 27:1

    Article  Google Scholar 

  5. Rezaei-Vahidian H, Farajpour T, Abdollahi M (2019) Using an inhibitor to prevent plasticizer migration from polyurethane matrix to EPDM based substrate. Chinese J Polym Sci 37:681

    Article  CAS  Google Scholar 

  6. Yuan JA, Sh A, Lx A et al (2021) Synergetic effect of aramid fiber and carbon fiber to enhance ablative resistance of EPDM-based insulators via constructing high-strength char layer. Compos Sci Technol 201:108494

    Article  Google Scholar 

  7. He Y, Chen Y, Liu C et al (2022) Construction of three-dimensional network structure in polyethylene-epdm-based phase change materials by carbon nanotube with enhanced thermal conductivity, mechanical property and photo-thermal conversion performance. Polym-Basel 14:2285

    CAS  Google Scholar 

  8. Lu ZH, Hu YB, Zhang BH et al (2022) Anti-migration performance of EPDM composite improved by octadecylamine-functionalized graphene oxide. J Appl Polym Sci. https://doi.org/10.1002/app.52713

    Article  Google Scholar 

  9. Darko C (2022) The link between swelling ratios and physical properties of EPDM rubber compound having different oil amounts. J Polym Res 29:325

    Article  CAS  Google Scholar 

  10. Azizli MJ, Barghamadi M, Rezaeeparto K et al (2022) Improvement of mechanical, morphological and thermal properties on PP-enriched graphene oxide/PP-g-MA/EPDM blend compatibilized: PP-g-MA compatibilizer and graphene oxide nanofiller role. J Polym Res 29(8):322

    Article  CAS  Google Scholar 

  11. Juliano L, Ravagnani SP, Morais A (2009) Study of plasticizer diffusion in a solid rocket motor´ s bondline. J Aerosp Technol Man 1:223

    Article  Google Scholar 

  12. Kang XL, Lu ZH, Feng WL et al (2021) A novel phosphorous and silicon-containing benzoxazine: highly efficient multifunctional flame-retardant synergist for polyoxymethylene. Adv Compos Hybrid Ma 4:127

    Article  CAS  Google Scholar 

  13. Lu ZH, Feng WL, Kang XL et al (2021) Synthesis of siloxane-containing benzoxazine and its synergistic effect on flame retardancy of polyoxymethylene. Polym Advan Technol 30:2686

    Article  Google Scholar 

  14. Lu ZH, Feng WL, Kang XL et al (2020) Flame retardant effect and mechanism of benzoxazine as synergist in intumescent flame-retardant polyoxymethylene. Polym Advan Technol 31:2512

    Article  CAS  Google Scholar 

  15. Zhang P, Yuan J, Pang A et al (2020) A novel UV-curing liner for NEPE propellant: Insight from molecular simulations. Compos Part B-Eng 195:108087

    Article  CAS  Google Scholar 

  16. Li H, Wei J, Zhang Y et al (2021) GO/HTPB composite liner for anti-migration of small molecules. Def Technol. https://doi.org/10.1016/j.dt.2021.11.006

    Article  Google Scholar 

  17. Grythe KF, Hansen FK (2007) Diffusion rates and the role of diffusion in solid propellant rocket motor adhesion. J Appl Polym Sci 103:1529

    Article  CAS  Google Scholar 

  18. Farajpour T, Moradi S, Rezaei-Vahidian H (2022) Synthesis of a new polyurethane-based liner modified by carbon nanotube to prevent plasticizer migration. Polym Bull 79:2903

    Article  CAS  Google Scholar 

  19. Huang Z, Nie H, Zhang Y et al (2012) Migration kinetics and mechanisms of plasticizers, stabilizers at interfaces of NEPE propellant/HTPB liner/EDPM insulation. J Hazard Mater 229:251

    Article  Google Scholar 

  20. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906

    Article  CAS  Google Scholar 

  21. Ciattoni A, Conti C, Zayats AV et al (2020) Electric control of spin-orbit coupling in graphene-based nanostructures with broken rotational symmetry. Laser Photonics Rev 14:2000214

    Article  CAS  Google Scholar 

  22. Ding Y, Guo X, Kuang D et al (2021) Hollow Cu2O nanospheres loaded with MoS2/reduced graphene oxide nanosheets for ppb-level NO2 detection at room temperature. J Hazard Mater 416:126218

    Article  CAS  Google Scholar 

  23. Yoo TJ, Kim SY, Kwon MG et al (2021) A facile method for improving detectivity of graphene/p-type silicon heterojunction photodetector. Laser Photonics Rev 15:2000557

    Article  CAS  Google Scholar 

  24. Wei J, Zang Z, Zhang Y et al (2017) Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt Lett 42:911

    Article  CAS  Google Scholar 

  25. Zhang H, Cai F, Luo Y et al (2022) Grafting silica onto reduced graphene oxide via hydrosilylation for comprehensive rubber applications: Molecular simulation and experimental study. Polym Compos. https://doi.org/10.1002/pc.26830

    Article  Google Scholar 

  26. Li X, Nie W, Xu Y et al (2020) Functionalized GO/polysulfide rubber composites with excellent comprehensive properties based interfacial optimum design. Compos Part B-Eng 198:108234

    Article  CAS  Google Scholar 

  27. Bae JE, Calmano T, Kränkel C (2022) Controllable dynamic single-and dual-channel graphene q-switching in a beam-splitter-type channel waveguide laser. Laser Photonics Rev 16:2100501

    Article  CAS  Google Scholar 

  28. Memon NK, McBain AW, Son SF (2016) Graphene oxide/ammonium perchlorate composite material for use in solid propellants. J Propul Power 32:682

    Article  Google Scholar 

  29. Hu K, Kulkarni DD, Choi I et al (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934

    Article  CAS  Google Scholar 

  30. Su Y, Kravets VG, Wong SL et al (2014) Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat Commun 5:1

    Google Scholar 

  31. Zheng L, Jerrams S, Xu Z et al (2020) Enhanced gas barrier properties of graphene oxide/rubber composites with strong interfaces constructed by graphene oxide and sulfur. Chem Eng J 383:123100

    Article  CAS  Google Scholar 

  32. Hummers S, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  33. Yoo MJ, Park HB (2019) Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon 141:515

    Article  CAS  Google Scholar 

  34. Milani G, Milani F (2021) Relation between activation energy and induction in rubber sulfur vulcanization: An experimental study. J Appl Polym Sci 138:50073

    Article  CAS  Google Scholar 

  35. Milani G, Milani F (2010) Alternating tangent approach for the optimal vulcanization of 2D–3D EPM/EPDM thick elements. J Appl Polym Sci 115:1995

    Article  CAS  Google Scholar 

  36. Prager S, Long FA (1951) Diffusion of Hydrocarbons in Polyisobutylene1. J Am Chem Soc 73:702

    Article  Google Scholar 

  37. Zhang X, Zheng J, Fang H et al (2018) High dimensional stability and low viscous response solid propellant binder based on graphene oxide nanosheets and dual cross-linked polyurethane. Compos Sci Technol 161:124

    Article  CAS  Google Scholar 

  38. Jiang F, Zhao W, Wu Y et al (2019) A polyethyleneimine-grafted graphene oxide hybrid nanomaterial: Synthesis and anti-corrosion applications. Appl Surf Sci 479:963

    Article  CAS  Google Scholar 

  39. Pourhashem S, Ghasemy E, Rashidi A et al (2020) A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings. J Coat Technol Res 17:19

    Article  CAS  Google Scholar 

  40. Xu Z, Zheng L, Wen S et al (2019) Graphene oxide-supported zinc oxide nanoparticles for chloroprene rubber with improved crosslinking network and mechanical properties. Compos Part A-Appl S 124:105492

    Article  CAS  Google Scholar 

  41. Ferrara G, Bertoldo M, Scoponi M et al (2001) Diffusion coefficient and activation energy of Irganox 1010 in poly (propylene-co-ethylene) copolymers. Polym Degrad Stabil 73:411

    Article  CAS  Google Scholar 

  42. Yu Z, Wang W, Yao W et al (2021) Simulation for the migration of nitrate ester plasticizers in different liners contacting with propellant by molecular dynamics. J Energ Mater 39:74

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Zhehong Lu and Yubing Hu contributed equally to this work. This work was financially supported by the National Natural Science Foundation of China (No. 22005145), Natural Science Foundation of Jiangsu Province (BK20210353), and the Fundamental Research Funds for the Central Universities (No. 30920041106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 106 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Hu, Y., Zhang, B. et al. EPDM/GO composite insulation for anti-migration of plasticizers. J Polym Res 29, 385 (2022). https://doi.org/10.1007/s10965-022-03243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03243-8

Keywords

Navigation