Skip to main content
Log in

Rearrangements in macromolecules containing an azomethyne bond

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Aim of this work was to obtain thermo- and heat-resistant polymers with azomethine bond and to establish general regularities of their rearrangements into polymers with complex of valuable functional properties and capable of being processed by modern industrial methods. Initial task was development of methods for obtaining matrix polymers of required structure. Aromatic dinitriles, bisimidoyl chlorides, N-phenyldichloriminocarbonate as well as bisphenols and aromatic dicarboxylic acids were used as precursor monomers. Based on these monomers, polyimidates, polycarboxyimidates and polyiminocarbonates were synthesized, rearrangements of which at high temperatures led to polyamides, linear polyimides or polyurethanes, respectively. It was assumed that these rearrangements occurred intramolecularly without evolving by-products and according to mechanism of Chapman or Mumm-Hess rearrangements. Both initial polyimidates, polycarboxyimidates, polyiminocarbonates and rearranged polyamides, linear polyimides, polyurethanes possess high thermal stability, good solubility in common polar organic solvents and concentrated mineral acids. Materials based of them have high physico-mechanical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Fig. 1
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Fig. 2
Scheme 20

Similar content being viewed by others

References

  1. Hallensleben HL (2000) Polyvinyl Compounds, Others". Ullmann's Encyclopedia of Industrial Chem. Weinheim: Wiley-VCH. https://doi.org/10.1002/14356007.a21_743

  2. Farion IA, Burdukovskii VF, Kholkhoev BC, Timashev PS, Chailakhyan RK (2018) Functionalization of chitosan with carboxylic acids and derivatives of them: Synthesis issues and prospects of practical use: A review. eXPRESS Polym Lett 12(12):1081–1105. https://doi.org/10.3144/expresspolymlett.2018.95

  3. Farion IA, Burdukovskii VF, Kholkhoev BC, Timashev PS (2021) Unsaturated and thiolated derivatives of polysaccharides as functional matrixes for tissue engineering and pharmacology: A review. Carbohydrate Polym 259:117735. https://doi.org/10.1016/j.carbpol.2021.117735

  4. Bulycheva EG, Belomoina NM, Vasil'ev VG, Hsub S (2018) Modified polyphenylquinoxalines for proton conducting membranes. INEOS OPEN 1(2):P. 94–97. https://doi.org/10.32931/io1808a

  5. Rusanov AL, Kostoglodov PV, Abadie MJ, Voytekunas VY, Likhachev DY (2008) Proton-Conducting Polymers and Membranes Carrying Phosphonic Acid Groups. Adv Polym Sci 216(1):125–155 (In book: Fuel Cells II (P. 125–155)). https://doi.org/10.1007/12_2008_131

  6. Kholkhoev BC, Bardakova KN, Korkunova OS, Minaev NV, Timashev PS, Burdukovskii VF (2021) Allyl-Functionalized Polybenzimidazole for Laser Stereolithography. Russ J Appl Chem 94:99–103. https://doi.org/10.1134/S1070427221010146

    Article  CAS  Google Scholar 

  7. Korshak VV, Vinogradova SV, Siling SA (1966) Using the Fries rearrangement to synthesize thermoreactive polyarylates. Polym Sci U.S.S.R8(9):1776–1782. https://doi.org/10.1016/0032-3950(66)90024-4

  8. Vinogradova SV, Salazkin SN, Melekhina GN, Komarova LI, Korshak VV (1980) Regrouping of aromatic heterochain polymers into polyarylene-type carbon-chain polymers. Polym Sci U.S.S.R. 22(12):3036–3042. https://doi.org/10.1016/0032-3950(80)90465-7

  9. Yoshida E, Kuwayama S (2009) Micelle formation induced by photo-Claisen rearrangement of poly(4-allyloxystyrene)-block-polystyrene. Colloid Polym Sci 287(7):789–793. https://doi.org/10.1007/s00396-009-2029-9

    Article  CAS  Google Scholar 

  10. Minsker KS, Biglova RZ (1999) Oxy and amino Claisen rearrangements in a series of poly(olefinylaminophenols). Polym Sci, Ser A 41(5):500–505

    Google Scholar 

  11. Rao U, Balasubramanian KK (1984) Claisen rearrangement of meta-substituted aryl propargyl ethers in poly(ehtylene glycol). Heterocycles 22(6):1351–1357. https://doi.org/10.3987/R-1984-06-1351

    Article  CAS  Google Scholar 

  12. Yang G, Matsuzono SI, Koyama E, Tokuhisa H, Hiratani K (2001) A new synthetic route to benzoxazole polymer via tandem Claisen rearrangement. Macromolecules 34:6545–6547. https://doi.org/10.1021/ma010721y

  13. de la Viuda MR, Tena A, Neumann S, Willruth S, Filiz V, Abetz V (2018) Novel functionalized polyamides prone to undergo thermal Claisen rearrangement in solid state. Polym Chem 9:4007–4016. https://doi.org/10.1039/C8PY00467F

    Article  Google Scholar 

  14. Likhatchev D, Gutierrrez-Wing C, Kardash I, Vera-Graziano R (1996) Soluble aromatic polyimides based on 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane: Synthesis and properties. J Appl Polym Sci 59(8):725–735. https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4%3C725::AID-APP18%3E3.0.CO;2-O

    Article  CAS  Google Scholar 

  15. Otsuka H, Onozuka I, Endo T (2000) Pinacol rearengement in the polymer backbone: a new class of reactive polymers with condensed benzopinacol units in the main chain. Tetrahedron Lett 41:1433–1437. https://doi.org/10.1016/S0040-4039(99)02309-6

  16. Otsuka H, Onozuka I, Shioya T, Endo T (2002) Pinacol rearrangement in the polymer backbone: Synthesis of novel reactive polymers with condensed benzopinacol units in the main chain and their complete rearrangement to poly(benzopinacolone)s. Macromol Chem Phys 203(12):1824–1832

    Article  CAS  Google Scholar 

  17. Zolotukhin MG, Balta Calleja FJ, Rueda DR, Bruix M, Sorokina YL, Sedova EA (1995) Novel rearrangement in the synthesis of poly(phthalidylidenearylene)s by self-condensation of 3-aryl-3-chlorophthalides. 2. Effect of monomer structure and reaction conditions. Macromolecules 28(22)7325–7330. https://doi.org/10.1021/ma00126a006

  18. Kraikin VA, Kuznetsov SI, Fattakhov RK, MUSING Z, Salazkin SN (2002) Thermal transformations of poly(diphenylenephthalide anthrones). Polym Sci Ser A T. 44(8):883–891

  19. Mochel VD, Cheng TC (1978) Thermolysis of Polyphosphazenes. 1. Carbon-13 Nuclear Magnetic Resonance Study of Rearrangement of Poly(bismethoxyphosphazene) Macromolecules 11(1):176–179. https://doi.org/10.1021/ma60061a031

  20. Smith MB, March J (2001) March's Advanced Organic Chemistry. Reactions, Mechanisms, and Structure. New York, Chichester, Weinchelm, Brisbane, Singapore, Toronto.: Wiley-Interscience Publication, John Wiley & Sons Inc 5:1464

  21. Brady K, Hegarty AF (1980) The isoimide-imide rearrangement. J Chem Soc, Perkin Trans 2 2:121–126. https://doi.org/10.1039/P29800000121

  22. Chapman AW (1925) CCLXIX. — Imino-aryl ethers. Part III. The molecular rearrangement of N-phenylbenziminophenyl ether. J Chem Soc Trans 1992–1998. https://doi.org/10.1039/CT9252701992

  23. Chapman AW (1929) LXXXIII. — A new method for preparing substituted diphenylamines. J Chem Soc (Resumed) 569–572. https://doi.org/10.1039/JR9290000569

  24. Harris FW, Karnavas AJ, Cucuras CN, Das S (1985) Polyimides containing oxyethylene units, III. Isoimide precursors to semicrystalline polyimides. Polym Preprints 26(2):287–289

  25. Sroog CE (1991) Polyimides. Prog Polym Sci 16:561–694. https://doi.org/10.1016/0079-6700(91)90010-I

    Article  CAS  Google Scholar 

  26. Wilson D, Stenzenberger HD, Hergenrother PM (1990) Polyimides. Springer Science & Business Media New York. 2013, 297 Pages. Originally published by Blackie & Son Ltd in 1990

  27. Ding M (2007) Isomeric polyimides. Prog Polym Sci 32:623–668. https://doi.org/10.1016/j.progpolymsci.2007.01.007

    Article  CAS  Google Scholar 

  28. Liaw D-J, Wang K-L, Huang Y-C, Lee K-R, Lai J-Y, Ha C-S (2012) Advanced polyimide materials: Syntheses, physical properties and applications. Prog Polym Sci 37:907–974. https://doi.org/10.1016/j.progpolymsci.2012.02.005

    Article  CAS  Google Scholar 

  29. Thomas S, Visakh PM (2012) Handbook of engineering and specialty thermoplastics. John Wiley & Sons, 2011. Scrivener Publishing LLC. https://doi.org/10.1002/9781118229064

  30. Fink JK (2008) High performance polymers. New York: William Andrew Inc. 760

  31. Yang HH (1989) Aromatic high-strength fibers. New York: Wiley 873. https://doi.org/10.1002/pol.1990.140280808

  32. Korshak VV, Vinogradova SV, Vasnev VA, Baranov EL (1969) Synthesis of acyclic polyimides. Bulletin of the Acad Sci USSR, Division Chem Sci 18:1310. https://doi.org/10.1007/BF00908212

  33. Čefelín P, Šebenda J, Wichterle O (1971) Formation of polyimides by –COOH and –CN reactions. J Polym Sci Part A-1: Polym Chem 9:192–197. https://doi.org/10.1002/pol.1971.150090118

  34. Wichterle O, Stehlíček J, Kodaira T, Šebenda J (1967) Anionic polymerization of adipimide. J Polym Sci, Part C: Polym Lett 5:931–933. https://doi.org/10.1002/pol.1967.110051008

    Article  CAS  Google Scholar 

  35. Saikia UP, Borah G, Pahari P (2018) Lewis-Acid-Catalysed Activation of Nitriles: A Microwave-Assisted Solvent-Free Synthesis of 2,4-Disubstituted Quinazolines and 1,3-Diazaspiro[5.5]undec-1-enes. European J Organic Chem 1211–1217. https://doi.org/10.1002/ejoc.201701585

  36. Vinokurov VA, Gaevoi EG, Polivin YN, Karakhanov RA (1989) Activation of nitriles by trifluoroacetic acid in exchange reactions of functional groups. React Kinet Catal Lett 40:313–317. https://doi.org/10.1007/BF02073810

    Article  CAS  Google Scholar 

  37. Burdukovskii VF, Kholkhoev BCh, Mognonov DM (2013) Synthesis of acyclic polyimides in ionic liquids. Russ Chem Bull 62(10):2263–2264. https://doi.org/10.1007/s11172-013-0327-3

    Article  CAS  Google Scholar 

  38. Ochirov BD, Burdukovskii VF, Mognonov DM (2010) Acyclic polyimides based on dinitriles and dicarboxylic acids. Russ J Appl Chem 83(12):2199–2201. https://doi.org/10.1134/S1070427210120256

    Article  CAS  Google Scholar 

  39. Ochirov BD, Gorenskaia EN, Kholkhoev BC, Ayurova OZ, Burdukovskii VF (2020) Synthesis and thermo-oxidative degradation of acyclic polyimides. Polymer 205:122692. https://doi.org/10.1016/j.polymer.2020.122692

  40. Ludwig R (2008) Ionic Liquids in Synthesis. (Edited by Peter Wasserscheid and Tom Welton. Wiley-VCH, Weinheim 729. https://doi.org/10.1002/cssc.200800126

  41. Ratti R (2014) Ionic Liquids: Synthesis and Applications in Catalysis. Adv Chem 729842:16. https://doi.org/10.1155/2014/729842

  42. García JM, García FC, Serna F, de la Peña JL (2010) High perfomance aromatic polyamides. Prog Polym Sci 35:623–686. https://doi.org/10.1016/j.progpolymsci.2009.09.002

    Article  CAS  Google Scholar 

  43. Reglero Ruiz JA, Trigo-López M, García FC, García JM (2017) Functional Aromatic Polyamides. Polymers 9:414. https://doi.org/10.3390/polym9090414

  44. Burdukovskii VF, Mognonov DM (2009) Aromatic polyamides based on dinitriles and bisphenols. Russ Chem Bull 58(11):2400–2401. https://doi.org/10.1007/s11172-009-0333-7

    Article  CAS  Google Scholar 

  45. Shingte RD, Chatterjee D, Tawade BV, Shrimant B, Wadgaonkar PP (2019) Aromatic polyesters containing cardo perhydrocumyl cyclohexylidene groups: Synthesis, characterization and gas permeation study. J Macromol Sci Part A: Pure and appl chem 56:136–145. https://doi.org/10.1080/10601325.2018.1549950

    Article  CAS  Google Scholar 

  46. Honkhambe PN, Biyani MV, Bhairamadgi NS, Wadgaonkar PP, Salunkhe MM (2010) Synthesis and characterization of new aromatic polyesters containing pendent naphthyl units. J Appl Polym Sci 117:2545–2552. https://doi.org/10.1002/APP.32162

    Article  CAS  Google Scholar 

  47. Sanzhizhapov DB, Tonevitskii YV, Mognonov DM, Doroshenko YuE (2003) New Heat-Resistant Polyimidates Derived from Bisphenols and Mono- and Dicarboxylic Acid Imidoyl Chlorides. Russ J Appl Chem 76:619–622. https://doi.org/10.1023/A:1025751607101

    Article  CAS  Google Scholar 

  48. Burdukovskiy VF, Mognonov DM, Farion IA (2007) Chapmen rearrengement in the synthesis of aromatic polyamides. J Polym Science. Part A: Polym Chem 45:4656–4660. https://doi.org/10.1002/pola.22212

  49. Burdukovskii VF, Mognonov DM (2006) Mechanism of the rearrangement of polyarylene benzimidoates into n-phenyl-substituted polyarades and poly(n-arylenebenzamides). Russ J Appl Chem 79(10):1715–1717. https://doi.org/10.1134/S1070427206100338

    Article  CAS  Google Scholar 

  50. Goyal M, Kakimoto MA, Imai Y (1998) Synthesis and properties of new soluble N-phenyl-substituted aromatic-aliphatic and all aromatic polyamides derived from 4,4’-dianilinophenyl. J Polym Sci Part A: Polym Chem 36:2193–2200. https://doi.org/10.1002/(SICI)1099-0518(19980930)36:13%3C2193::AID-POLA4%3E3.0.CO;2-V

  51. Imai Y, Hamaoka N, Kakimoto MA (1984) Preparation and properties of N-phenylated aromatic polyamides from N, N’-diphenylenediamine and aromatic diacid chlorides. J Polym Sci Part A: Polym Chem 22:1291–1297. https://doi.org/10.1002/pol.1984.170220609

  52. Burdukovskii VF, Mognonov DM (2011) Acyclic N-phenylsubstituted polyimides based on imidoyl chlorides and dicarboxylic acids. Polym Sci, Ser B 53:341–344. https://doi.org/10.1134/S1560090411060029

    Article  CAS  Google Scholar 

  53. Burdukovskii VF, Mognonov DM (2013) Macromolecular-chain rearrangement during synthesis of poly(N-phenylurethanes). Polym Sci, Ser B 55:213–217. https://doi.org/10.1134/S1560090413040015

    Article  CAS  Google Scholar 

  54. Li C, Kohn J (1991) Macromolecular backbone rearrangements: a new approach to the synthesis of N-phenyl-substituted polyurethanes. Macromolecules 24:2302–2308. https://doi.org/10.1021/ma00009a028

  55. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002

    Article  CAS  Google Scholar 

  56. Foti S, Maravigna P, Montaudo G (1981) Mechanisms of thermal decomposition in totally aromatic polyurethanes. J Polym Sci: Polym Chem Edition 9:1679–1687. https://doi.org/10.1002/pol.1981.170190708

    Article  Google Scholar 

Download references

Acknowledgements

The results of the chapters 1 and 2 were obtained within the state assignment of Ministry of Science and Higher Education of the Russian Federation theme No. 0273-2021-0007.

The results of the chapters 3-5 were obtained within the RSF grant No. 22-23-00918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan. A. Farion.

Ethics declarations

Conflict of interests

The authors declare no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Supplementary file2 (DOCX 51 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burdukovskii, V.F., Farion, I.A. Rearrangements in macromolecules containing an azomethyne bond. J Polym Res 29, 362 (2022). https://doi.org/10.1007/s10965-022-03200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03200-5

Keywords

Navigation