Skip to main content
Log in

Multiblock copolymers containing poly(butylene succinate) and poly(ε-caprolactone) blocks: Effect of block ratio and length on physical properties and biodegradability

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In order to obtain polymers with preserved thermal properties and tunable biodegradability multiblock copolymers comprising blocks of biodegradable polyesters poly(ε-caprolactone) (PCL) and poly(butylene succinate) (PBS) were successfully synthesized through chain-extension reaction using hexamethylene diisocyanate. Two series of copolymers with different length of PCL block and varying ratio of PCL and PBS block through each series were synthesized. PCL-b-PBS copolymers were characterized by NMR, FTIR, WAXS, DSC, TG and DMA in solid state. Special attention was given to the investigation of the influence of composition and structure of multiblock copolymers on their biodegradability properties. Biodegradability of these multiblock copolymers was assessed through hydrolysis in alkaline medium and soil burial test. Each block in multiblock copolymers crystallized separately, with adverse influence of its presence on degree of crystallinity and, in much lesser extent, on melting temperature of the second phase. Multiblock copolymers showed high thermal stability, comparable to corresponding homopolymers. Mechanical strength, deduced from storage modulus in glassy and rubbery state, was a firm function of composition. Copolymers rich in PBS were more prone to degradation through simple hydrolysis in alkaline medium, while PCL-rich copolymers were more susceptible to degradation by soil microorganisms. Through the change in copolymer composition, degradability in different environments could be tailored without compromising materials’ thermal properties. Besides composition, molecular weight of copolymers had the major influence on degradability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Larranaga A, Lizundia E (2019) A review on the thermomechanical properties and biodegradation behaviour of polyesters. Eur Polym J 121:109296

    Article  CAS  Google Scholar 

  2. Samantaray PK, Little A, Haddleton DM, McNally T, Tan B, Sun Z, Huang W, Ji Y, Wan C (2020) Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chem 22(13):4055–4081

    Article  CAS  Google Scholar 

  3. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid)-Mass production, processing, industrial applications, and end of life. Adv Drug Deliver Rev 107:333–366

    Article  CAS  Google Scholar 

  4. Gigli M, Fabbri M, Lotti N, Gamberini R, Rimini B, Munari A (2016) Poly(butylene succinate)-based polyesters for biomedical applications: A review. Eur Polym J 75:431–460

    Article  CAS  Google Scholar 

  5. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256

    Article  CAS  Google Scholar 

  6. Bartnikowski M, Dargaville TR, Ivanovski S, Hutmacher DW (2019) Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog Polym Sci 96:1–20

    Article  CAS  Google Scholar 

  7. Vilela C, Sousa AF, Fonseca AC, Serra AC, Coelho JFJ, Freire CSR, Silvestre AJD (2014) The quest for sustainable polyesters – insights into the future. Polym Chem 5(9):3119–3141

    Article  CAS  Google Scholar 

  8. Xu J, Guo B-H (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5(11):1149–1163

    Article  CAS  PubMed  Google Scholar 

  9. Thakur M, Majid I, Hussain S, Nanda V (2021) Poly(ε-caprolactone): A potential polymer for biodegradable food packaging applications. Packag Technol Sci 34(8):449–461

    Article  CAS  Google Scholar 

  10. Di Lorenzo ML (2021) Poly(l-Lactic Acid)/Poly(Butylene Succinate) Biobased Biodegradable Blends. Polym Rev 61:457–492

    Article  CAS  Google Scholar 

  11. Su S, Kopitzky R, Tolga S, Kabasci S (2019) Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review. Polymers 11(7):1193

    Article  PubMed Central  CAS  Google Scholar 

  12. Gumede TP, Luyt AS, Müller AJ (2018) Review on PCL, PBS and PCL/PBS blends containing carbon nanotubes. Express Polym Lett 12(6):505–529

    Article  CAS  Google Scholar 

  13. Bikiaris DN (2013) Nanocomposites of aliphatic polyesters: An overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym Degrad Stabil 98(9):1908–1928

    Article  CAS  Google Scholar 

  14. Gonçalves SPC, Martins-Franchetti SM (2010) Action of soil microorganisms on PCL and PHBV blend and films. J Polym Environ 18(4):714–719

    Article  CAS  Google Scholar 

  15. Cao A, Okamura T, Ishiguro C, Nakayama K, Inoue Y, Masuda T (2002) Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-ε-caprolactone)s. Polymer 43(3):671–679

    Article  CAS  Google Scholar 

  16. Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C (2006) Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym Degrad Stabil 91(2):367–376

  17. Safari M, Martínez de Ilarduya A, Mugica A, Zubitur M, Muñoz-Guerra S, Müller AJ (2018) Tuning the Thermal Properties and Morphology of Isodimorphic Poly[(butylene succinate)-ran-(ε-caprolactone)] Copolyesters by Changing Composition, Molecular Weight, and Thermal History. Macromolecules 51(23):9589–9601

    Article  CAS  Google Scholar 

  18. Safari M, Otaegi I, Aramburu N, Guerrica-Echevarria G, de Ilarduya AM, Sardon H, Müller AJ (2021) Synthesis, Structure, Crystallization and Mechanical Properties of Isodimorphic PBS-ran-PCL Copolyesters. Polymers 13(14):2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fuoco T, Finne-Wistrand A (2019) Enhancing the Properties of Poly(ε-caprolactone) by Simple and Effective Random Copolymerization of ε-Caprolactone with p-Dioxanone. Biomacromol 20(8):3171–3180

    Article  CAS  Google Scholar 

  20. Fernández J, Etxeberria A, Sarasua J-R (2015) In vitro degradation studies and mechanical behavior of poly(ε-caprolactone-co-δ-valerolactone) and poly(ε-caprolactone-co-L-lactide) with random and semi-alternating chain microstructures. Eur Polym J 71:585–595

    Article  CAS  Google Scholar 

  21. Nikolic MS, Djonlagic J (2001) Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym Degrad Stabil 74(2):263–270

    Article  CAS  Google Scholar 

  22. Papageorgiou GZ, Bikiaris DN (2007) Synthesis, Cocrystallization, and Enzymatic Degradation of Novel Poly(butylene-co-propylene succinate) Copolymers. Biomacromol 8(8):2437–2449

    Article  CAS  Google Scholar 

  23. Shirahama H, Kawaguchi Y, Aludin MS, Yasuda H (2001) Synthesis and enzymatic degradation of high molecular weight aliphatic polyesters. J Appl Polym Sci 80(3):340–347

    Article  CAS  Google Scholar 

  24. Xu C-L, Zeng J-B, Zhu Q-Y, Wang Y-Z (2013) Poly(ethylene succinate)-b-poly(butylene succinate) Multiblock Copolyesters: The Effects of Block Length and Composition on Physical Properties. Ind Eng Chem Res 52(38):13669–13676

    Article  CAS  Google Scholar 

  25. Zheng L, Li C, Huang W, Huang X, Zhang D, Guan G, Xiao Y, Wang D (2011) Synthesis of high-impact biodegradable multiblock copolymers comprising of poly(butylene succinate) and poly(1,2-propylene succinate) with hexamethylene diisocyanate as chain extender. Polym Adv Technol 22(2):279–285

    Article  CAS  Google Scholar 

  26. Shang Y, Jiang Z, Qiu Z (2021) Synthesis, thermal and mechanical properties of novel biobased, biodegradable and double crystalline Poly(butylene succinate)-b-Poly(butylene sebacate) multiblock copolymers. Polymer 214:123248

    Article  CAS  Google Scholar 

  27. Zeng J-B, Li Y-D, Zhu Q-Y, Yang K-K, Wang X-L, Wang Y-Z (2009) A novel biodegradable multiblock poly(ester urethane) containing poly(l-lactic acid) and poly(butylene succinate) blocks. Polymer 50(5):1178–1186

    Article  CAS  Google Scholar 

  28. Zheng L, Wang Z, Wu S, Li C, Zhang D, Xiao Y (2013) Novel Poly(butylene fumarate) and Poly(butylene succinate) Multiblock Copolymers Bearing Reactive Carbon-Carbon Double Bonds: Synthesis, Characterization, Cocrystallization, and Properties. Ind Eng Chem Res 52(18):6147–6155

    Article  CAS  Google Scholar 

  29. Fabbri M, Gigli M, Gamberini R, Lotti N, Gazzano M, Rimini B, Munari A (2014) Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polym Degrad Stabil 108:223–231

    Article  CAS  Google Scholar 

  30. Li S-L, Zeng J-B, Wu F, Yang Y, Wang Y-Z (2014) Succinic Acid Based Biodegradable Thermoplastic Poly(ester urethane) Elastomers: Effects of Segment Ratios and Lengths on Physical Properties. Ind Eng Chem Res 53(4):1404–1414

    Article  CAS  Google Scholar 

  31. Zhang J, Xu J, Wang H, Jin W, Li J (2009) Synthesis of multiblock thermoplastic elastomers based on biodegradable poly (lactic acid) and polycaprolactone. Mat Sci Eng C 29(3):889–893

    Article  CAS  Google Scholar 

  32. Nakayama Y, Okuda S, Yasuda H, Shiono T (2007) Synthesis of multiblock poly(l-lactide)-co-poly(ε-caprolactone) from hydroxy-telechelic prepolymers prepared by using neodymium tetrahydroborate. React Funct Polym 67(9):798–806

    Article  CAS  Google Scholar 

  33. Zheng L, Li C, Wang Z, Wang J, Xiao Y, Zhang D, Guan G (2012) Novel Biodegradable and Double Crystalline Multiblock Copolymers Comprising of Poly(butylene succinate) and Poly(ε-caprolactone): Synthesis, Characterization, and Properties. Ind Eng Chem Res 51(21):7264–7272

    Article  CAS  Google Scholar 

  34. Xing D-D, Jia Y-W, Li D-F, Wang X-L, Wang Y-Z (2017) Novel Multiblock Poly(ε-caprolactone) Copolyesters Containing D-Glucose Derivatives with Different Bicyclic Structures. ACS Sustain Chem Eng 5(8):7040–7051

    Article  CAS  Google Scholar 

  35. Huang M, Dong X, Wang L, Zheng L, Liu G, Gao X, Li C, Müller AJ, Wang D (2018) Reversible Lamellar Periodic Structures Induced by Sequential Crystallization/Melting in PBS-co-PCL Multiblock Copolymer. Macromolecules 51(3):1100–1109

    Article  CAS  Google Scholar 

  36. Huang M, Zheng L, Wang L, Dong X, Gao X, Li C, Wang D (2017) Double Crystalline Multiblock Copolymers with Controlling Microstructure for High Shape Memory Fixity and Recovery. ACS Appl Mater Inter 9(35):30046–30055

    Article  CAS  Google Scholar 

  37. Sailema-Palate GP, Vidaurre A, Campillo-Fernández AJ, Castilla-Cortázar I (2016) A comparative study on Poly(ε-caprolactone) film degradation at extreme pH values. Polym Degrad Stabil 130:118–125

    Article  CAS  Google Scholar 

  38. Dai X, Qiu Z (2017) Crystallization kinetics, morphology, and hydrolytic degradation of novel biobased poly(butylene succinate-co-decamethylene succinate) copolyesters. Polym Degrad Stabil 137:197–204

    Article  CAS  Google Scholar 

  39. Khan I, Ray Dutta J, Ganesan R (2017) Lactobacillus sps. lipase mediated poly (ε-caprolactone) degradation. Int J Biol Macromol 95:126–131

    Article  CAS  PubMed  Google Scholar 

  40. Pan W, Bai Z, Su T, Wang Z (2018) Enzymatic degradation of poly(butylene succinate) with different molecular weights by cutinase. Int J Biol Macromol 111:1040–1046

    Article  CAS  PubMed  Google Scholar 

  41. Abe M, Kobayashi K, Honma N, Nakasaki K (2010) Microbial degradation of poly(butylene succinate) by Fusarium solani in soil environments. Polym Degrad Stabil 95(2):138–143

    Article  CAS  Google Scholar 

  42. Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polym Degrad Stabil 91(3):620–627

    Article  CAS  Google Scholar 

  43. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manage 59:526–536

    Article  CAS  Google Scholar 

  44. Hongsriphan N, Pinpueng A (2019) Properties of Agricultural Films Prepared from Biodegradable Poly(Butylene Succinate) Adding Natural Sorbent and Fertilizer. J Polym Environ 27(2):434–443

    Article  CAS  Google Scholar 

  45. Huang J, Cui C, Yan G, Huang J, Zhang M (2016) A Study on Degradation of Composite Material PBS/PCL. Polym Polym Compos 24(2):143–148

    CAS  Google Scholar 

  46. Chen S, Ma C, Zhang G (2016) Biodegradable polymers for marine antibiofouling: Poly(ε-caprolactone)/poly(butylene succinate) blend as controlled release system of organic antifoulant. Polymer 90:215–221

    Article  CAS  Google Scholar 

  47. Solomon OF, Ciutǎ IZ (1962) Determination of the intrinsic viscosity of polymer solutions by a simple determination of viscosity. J Appl Polym Sci 6(24):683–686

    Article  CAS  Google Scholar 

  48. Ihn KJ, Yoo ES, Im SS (1995) Structure and Morphology of Poly(tetramethylene succinate) Crystals. Macromolecules 28(7):2460–2464

    Article  CAS  Google Scholar 

  49. Ichikawa Y, Kondo H, Igarashi Y, Noguchi K, Okuyama K, Washiyama J (2000) Crystal structures of α and β forms of poly(tetramethylene succinate). Polymer 41(12):4719–4727

    Article  CAS  Google Scholar 

  50. Bittiger H, Marchessault RH, Niegisch WD (1970) Crystal structure of poly-[epsilon]-caprolactone. Acta Crystall B 26(12):1923–1927

    Article  CAS  Google Scholar 

  51. Nishide H, Toyota K, Kimura M (1999) Effects of soil temperature and anaerobiosis on degradation of biodegradable plastics in soil and their degrading microorganisms. Soil Sci Plant Nutr 45(4):963–972

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2022-14/200135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija S. Nikolic.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 565 KB)

Supplementary file2 (TIF 1702 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponjavic, M., Jevtic, S. & Nikolic, M.S. Multiblock copolymers containing poly(butylene succinate) and poly(ε-caprolactone) blocks: Effect of block ratio and length on physical properties and biodegradability. J Polym Res 29, 295 (2022). https://doi.org/10.1007/s10965-022-03144-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03144-w

Keywords

Navigation