Skip to main content
Log in

A Novel Bio-based Polyaspartic Acid Copolymer: Synthesis, Structure and Performance of Degradation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A novel bio-based polyaspartic acid copolymer, as a multifunctional polymer was fabricated via in-site melting polymerization method using l-aspartic acid, γ-aminobutyric acid, l-phenylalanine and l-alanine as raw materials. The synthetic conditions were studied in detail, and the structure and degradation assays of these copolymers were investigated by FT-IR, XRD, weight loss rate, pH values, intrinsic viscosity and SEM. According to the results, all of the copolymers were found to have similar structure and excellent degradability. Additionally, the optimized copolymer C7 [l-aspartic acid (0.45 mol), γ-aminobutyric acid (0.35 mol), l-phenylalanine (0.05 mol) and l-alanine (0.15 mol)] exhibited the highest weight loss rate among all the copolymers. The weight loss rates on the 28th day in aqueous medium, phosphate buffered saline solution, 5.0 wt% trypsin solution and soil culture medium reached up to 44.74 wt%, 99.75 wt%, 90.67 wt% and 83.58 wt%, respectively. And the appropriate introduction of bio-based amino acids could control the degradation of polyaspartic acid distinctly. All of these results indicated that the bio-based polyaspartic acid copolymer could be used for reference as a good understanding of description the degradation of other environmentally friendly bio-based polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shayan M, Azizi H, Ghasemi I al (2015) Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked polylactic acid. Carbohyd Polym 124:237–244

    Article  CAS  Google Scholar 

  2. Leejarkpai T, Suwanmanee U, Rudeekit Y et al (2011) Biodegradable kinetics of plastics under controlled composting conditions. Waste Manag 31:1153–1161

    Article  CAS  PubMed  Google Scholar 

  3. Arrieta MP, Samper MD, López J et al (2014) Combined effect of Poly (hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging. J Polym Environ 22:460–470

    Article  CAS  Google Scholar 

  4. Polyák P, Szemerszki D, Vörös G et al (2017) Mechanism and kinetics of the hydrolytic degradation of amorphous poly (3-hydroxybutyrate). Polym Degrad Stab 140:1–8

    Article  CAS  Google Scholar 

  5. Kucharczyk P, Pavelková A, Stloukal P et al (2016) Degradation behavior of PLA-based polyesterurethanes under abiotic and biotic environments. Polym Degrad Stab 129:222–230

    Article  CAS  Google Scholar 

  6. Kim HS, Kim HJ, Lee JW et al (2006) Biodegradability of bio-flour filled biodegradable poly (butylene succinate) bio-composites in natural and compost soil. Polym Degrad Stab 91:1117–1127

    Article  CAS  Google Scholar 

  7. Mouhmid B, Imad A, Benseddiq N et al (2006) A study of the mechanical behavior of a glass fiber reinforced polyamide 6, 6: experimental investigation. Polym Test 25:544–552

    Article  CAS  Google Scholar 

  8. Sudhakar M, Priyadarshini C, Doble M et al (2007) Marine bacteria mediated degradation of nylon 66 and 6. Int Biodeterior Biodegrad 60:144–151

    Article  CAS  Google Scholar 

  9. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  10. Koller M (2017) Advances in polyhydroxyalkanoate (PHA) production. Bioengineering 4(4):88

    Article  PubMed Central  Google Scholar 

  11. Vandamme EJ, Baets SD, Steinbuchel (2010) Biopolymers, volume 6, polysaccharides ii: polysaccharides from eukaryotes. Wiley-VCH, Weinheim

    Google Scholar 

  12. Berezina N, Martelli SM (2014) Bio-based polymers and materials. RSC Green Chem 27:1–28

    CAS  Google Scholar 

  13. Pagacz J, Raftopoulos KN, Leszczyńska A et al (2016) Bio-polyamides based on renewable raw materials. J Therm Anal Calorim 123:1225–1237

    Article  CAS  Google Scholar 

  14. Kolb N, Winkler M, Syldatk C, Meier MAR (2014) Long-chainpolyesters and polyamides from biochemically derived fatty acids. Eur Polym J 51:159–166

    Article  CAS  Google Scholar 

  15. Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1–39

    Article  CAS  Google Scholar 

  16. Espinosa LMD, Meier MAR (2011) Plant oils: the perfect renewable resource for polymer science. Eur Polymer J 47(5):837–852

    Article  CAS  Google Scholar 

  17. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):8–12

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wu J, Wang P, Jiang D et al (2017) In vitro and in vivo characterization of strontium-containing calcium sulfate/poly (amino acid) composite as a novel bioactive graft for bone regeneration. RSC Adv 7:54306–54312

    Article  Google Scholar 

  19. Zhao ZH, Quan ZX, Jiang DM et al (2013) In vitro and in vivo biological characterizations of a new poly (amino acids)/calcium sulfate composite material for bone regeneration. J Mater Sci 48:2022–2029

    Article  CAS  Google Scholar 

  20. Sharma S, Dua A, Malik A (2014) Polyaspartic acid based superabsorbent polymers. Eur Polym J 59:363–376

    Article  CAS  Google Scholar 

  21. Shi S, Wu Y, Wang Y et al (2017) Synthesis and characterization of a biodegradable polyaspartic acid/2-amino-2-methyl-1-propanol graft copolymer and evaluation of its scale and corrosion inhibition performance. RSC Adv 7:36714–36721

    Article  CAS  Google Scholar 

  22. Yan MF, Liu ZF, Wu XL et al (2010) Research on preparation and performance of environmentally friendly scale inhibition and dispersion agent. The 4th ICBBE, pp 1–3

  23. Zhang YL, Hu ZG, Wang JL et al (2016) Biodegradation of poly (aspartic acid-lysine) copolymers by mixed bacteria from natural water. Polym Degrad Stab 128:134–140

    Article  CAS  Google Scholar 

  24. Kim JH, Chang MS, Jeon YS et al (2011) Synthesis and characterization of poly (aspartic acid) derivatives conjugated with various amino acids. J Polym Res 18:881–890

    Article  CAS  Google Scholar 

  25. Hayashi T, Iwatsuki M (2010) Biodegradation of copoly (L-aspartic acid/L-glutamic acid) in vitro. Biopolymers 29:549–557

    Article  Google Scholar 

  26. Zhang Y, Wei H, Jiang Y et al (2017) Biodegradation of poly(aspartic acid-itaconic acid) copolymers by miscellaneous microbes from natural water. J Polym Environ 26:1–6

    Google Scholar 

  27. Wang P, Liu P, Xu F, Fan X, Yuan H, Li H et al (2016) Controlling the degradation of dicalcium phosphate/calcium sulfate/poly (amino acid) biocomposites for bone regeneration. Polym Compos 39:E122–E131

    Google Scholar 

  28. Fan XX (2016) In vitro and in vivo evaluation of poly (aminoacid) /hydroxyapatite/calcium sulfate composite for load-bearing bone repair. PhD Dissertation, Sichuan University

  29. Zheng H, Li H, Xiong Y et al (2016) Studies on the trypsin degradation of /PAA composite. Chem Eng Equip 11:1–3

    Google Scholar 

  30. Zhang M, Wang XX, Liu BJ et al (2008) Study on biodegradable behavior of polyesters in the soil of Shanxi local. Polym Mater Sci Eng 24:91–97

    CAS  Google Scholar 

  31. Zhang M, Huang J-t, Cui CN, Songs J et al (2010) Biodegradability of PBS/PHB Blends. Polym Mater Sci Eng 26:43–46

    Google Scholar 

  32. Liu JP, Zheng RB (2005) Experiments on polymer science and materials engineering. Chemical Industry Press, Beijing

    Google Scholar 

  33. Thombre S, Sarwade B (2005) Synthesis and biodegradability of polyaspartic acid: a critical review. J Macromol Sci A 42:1299–1315

    Article  CAS  Google Scholar 

  34. Wang P (2017) Research on controllable degradation biocomposites of dicalcium phosphate/calcium sulfate/poly (amino acid) for orthopedic tissue engineering. PhD Dissertation, Sichuan University

  35. Little U, Buchanan F, Harkin-Jones E et al (2009) Accelerated degradation behavior of poly (ɛ-caprolactone) via melt blending with poly (aspartic acid-co-lactide) (PAL). Polym Degrad Stab 94:213–220

    Article  CAS  Google Scholar 

  36. Ebata M, Morita K (2008) Hydrolysis of ε-amincaproyl compounds by trypsin. J Biochem 46:407–416

    Article  Google Scholar 

  37. Huang J, Cui C, Yan G, Zhang M (2016) A study on degradation of composite material PBS/PCL. Polym Polym Compos 24:143–146

    Article  CAS  Google Scholar 

  38. Tokiwa Y, Calabia BP, Ugwu CU et al (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hideto T, Kazumasa N, Kensaku I (2001) High-temperature hydrolysis of poly (L-lactide) films with different crystallinities and crystalline thicknesses in phosphate-buffered solution. Macromol Mater Eng 286:398–406

    Article  Google Scholar 

  40. Zhou W, Wang X, Yang B et al (2013) Synthesis, physical properties and enzymatic degradation of bio-based poly (butylene adipate-co-butylene furandicarboxylate) copolyesters. Polym Degrad Stab 98:2177–2183

    Article  CAS  Google Scholar 

  41. Tao H, Huang JL, Yang SL et al (2004) Researches on biodegradability of polyaspartic acid in aqueous medium. J Harbin Inst Technol 36:1659–1662

    CAS  Google Scholar 

  42. Vey E, Roger C, Meehan L et al (2008) Degradation mechanism of poly (lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polym Degrad Stab 93:1869–1876

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the National Natural Science Foundation of China (No. 51773123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-gang Yan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xm., Ren, Hh., Yan, Yg. et al. A Novel Bio-based Polyaspartic Acid Copolymer: Synthesis, Structure and Performance of Degradation. J Polym Environ 26, 4201–4210 (2018). https://doi.org/10.1007/s10924-018-1293-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1293-5

Keywords

Navigation