Skip to main content
Log in

Enhanced thermal stability of biobased crosslinked poly (isobornylacrylate-co-2-ethylhexylacrylate) copolymers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymerization kinetics as well as thermal properties of acrylic copolymers containing Isobornylacrylate- (IBOA) and 2-Ethylhexylacrylate- (2-EHA) units were investigated. Poly(IBOA-co-2-EHA) samples were synthesized via free radical photopolymerization/crosslinking reactions of IBOA and 2-EHA, in the presence of 1,6-hexanedioldiacrylate (HDDA) as crosslinking agent, to obtain chemically crosslinked polymer networks. High conversion rates of the acrylic double bonds of the monomers were obtained from investigation of the polymerization kinetics by infrared spectroscopy. Analysis of the thermal properties using differential scanning calorimetry revealed the appearance of a single glass transition of Poly(IBOA-co-2-EHA) over a large range of temperatures comprised between 208 and 321 K, depending on monomer composition. The evolution of the glass transition temperature was rationalized by applying the Fox, Gordon Taylor, and Brekner-Schneider-Cantow models, revealing presumably the existence of hydrogen bonding interaction involving the carbonyl groups of the acrylates. Several degradation processes were observed by thermogravimetrical analysis, especially that of the isobornylene group at low temperature followed by the degradation of the carbon backbone at higher temperatures. Increasing IBOA content leads to a higher thermal stability of Poly(IBOA-co-2-EHA). Each degradation step could be characterized separately exhibiting activation energies which strongly depend on the degradation time of each step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brandrup J, Immergut EH, Grulke EA (2003) Polymer Handbook. John Wiley & Sons, Chichester, West Sussex, UK

    Google Scholar 

  2. Shrivastava A (2018) Introduction to Plastics Engineering. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/C2014-0-03688-X

    Article  Google Scholar 

  3. Zhang C, Bai Y, Cheng B, Liu W (2018) Adhesion properties of atactic polypropylene/acrylate blend copolymer and its adhesion mechanism for untreated polypropylene materials. Int J Adhes Adhes 80:7–15. https://doi.org/10.1016/j.ijadhadh.2017.09.007

    Article  CAS  Google Scholar 

  4. Wu WC, Wang DM, Lin YC, Dai CA, Cheng KC, Hu MS, Lee BS (2016) Hydrogen bonds of a novel resin cement contribute to high adhesion strength to human dentin. Dent Mater 32:114–124. https://doi.org/10.1016/j.dental.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  5. Richter A (2010) Hydrogels for actuators. Springer series on chemical sensors and biosensors, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75645-3_7

    Article  Google Scholar 

  6. Voit W, Ware T, Gall K (2010) Radiation crosslinked shape-memory polymers. Polymer (Guildf) 51:3551–3559. https://doi.org/10.1016/j.polymer.2010.05.049

    Article  CAS  Google Scholar 

  7. Richard RE, Schwarz M, Ranade S, Chan AK, Matyjaszewski K, Sumerlin B (2005) Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents. Biomacromol 6:3410–3418. https://doi.org/10.1021/bm050464v

    Article  CAS  Google Scholar 

  8. López-García MdC, Beebe DJ, Crone WC (2007) Characterization of Poly(isobornyl acrylate) as a Construction Material for Microfluidic Applications. J Appl Polym Sci 21:449–456. https://doi.org/10.1002/app.26195

    Article  CAS  Google Scholar 

  9. Roose P (2013) Residual stress in radiation-cured acrylate coatings. React Funct Polym 73:323–331. https://doi.org/10.1016/j.reactfunctpolym.2012.05.002

    Article  CAS  Google Scholar 

  10. Zeggai N, Dali Youcef B, Dubois F, Bouchaour T (2018) Analysis of dynamic mechanical properties of photochemically crosslinked poly(isobornylacrylate-co-isobutylacrylate) applying WLF and Havriliak-Negami models. Polym Test 72:432–438. https://doi.org/10.1016/j.polymertesting.2018.10.038

    Article  CAS  Google Scholar 

  11. Jakubowski W, Juhari A, Best A, Koynov K, Pakula T, Matyjaszewski K (2008) Comparison of thermomechanical properties of statistical, gradient and block copolymers of isobornyl acrylate and n-butyl acrylate with various acrylate homopolymers. Polymer 49:1567–1578. https://doi.org/10.1016/j.polymer.2008.01.047

    Article  CAS  Google Scholar 

  12. Weng L, Vijayaraghavan R, MacFarlane DR, Elliott GD (2014) Application of the Kwei equation to model the Tg behavior of binary blends of sugars and salts. Cryobiology 68:155–158. https://doi.org/10.1016/j.cryobiol.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Appell M, Schmidt-Naake G (2004) Stable free-radical copolymerization of styrene with acrylates using OH-TEMPO. Macromol Chem Phys 205:637–644. https://doi.org/10.1002/macp.200300069

    Article  CAS  Google Scholar 

  14. Kuo SW, Kao HC, Chang FC (2003) Thermal behavior and specific interaction in high glass transition temperature PMMA copolymer. Polymer 44:6873–6882. https://doi.org/10.1016/j.polymer.2003.08.026

    Article  CAS  Google Scholar 

  15. (a) Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328. https://doi.org/10.1002/pol.1966.110040504. (b) Flynn JH, Wall LA (1966) General Treatment of the Thermogravimetry of Polymers. J Res Natl Bur Stand Sect A 70:487–523. https://nvlpubs.nist.gov/nistpubs/jres/70A/jresv70An6p487_A1b.pdf

  16. Rouquerol J (1964) Etude de l’eau de constitution de plusieurs oxydes a grande surface specifique (glucine, alumine, silice-alumine). University of Paris, France, PhD-thesis

    Google Scholar 

  17. Paulik F, Paulik J (1971) Quasi-isothermal thermogravimetry. Anal Chim Acta 56:328–331. https://doi.org/10.1016/S0003-2670(01)82431-4

    Article  CAS  Google Scholar 

  18. Abadie MJM, Popa M, Zaharia-arnautu M, Bulacovschi V (2000) Kinetics of photochemical polymerization of monomers acrylics in the presence of functionalized silica. Eur Polym J 36:571–581. https://doi.org/10.1016/S0014-3057(99)00097-X

    Article  CAS  Google Scholar 

  19. Ye S, Cramer NB, Bowman CN (2011) Relationship between Glass Transition Temperature and Polymerization Temperature for Cross-Linked Photopolymers. Macromolecules 490–494. https://doi.org/10.1021/ma101296j

  20. Sokolowski W, Metcalfe A, Hayashi S (2007) Medical applications of shape memory. Biomed Mater 2:S23. https://doi.org/10.1088/1748-6041/2/1/S04

    Article  CAS  PubMed  Google Scholar 

  21. Fox TG, Flory PJ (1954) The glass temperature and related properties of polystyrene. Influence of molecular weight. J Polym Sci 14:315–319. https://doi.org/10.1002/pol.1954.120147514

    Article  CAS  Google Scholar 

  22. Gordon M, Taylor JS (1952) Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. J Appl Chem 2:493–500. https://doi.org/10.1002/jctb.5010020901

    Article  CAS  Google Scholar 

  23. Brekner MJ, Schneider HA, Cantow HJ (1988) Approach to the composition dependence of the glass transition temperature of compatible polymer blends: 1. Polymer (Guildf) 29:78–85. https://doi.org/10.1016/0032-3861(88)90203-0

    Article  CAS  Google Scholar 

  24. Zeggai N, Bouberka Z, Dubois F, Bouchaour T, Dali Youcef B, Delarace L, Potier J, Supiot P, Maschke U (2021) Effect of structure on the glass transition temperatures of linear and crosslinked poly(isobornylacrylate-coisobutylacrylate). J Appl Polym Sci 138:50449. https://doi.org/10.1002/app.50449

    Article  CAS  Google Scholar 

  25. Haloi DJ, Singha NK (2011) Synthesis of poly(2-ethylhexyl acrylate)/clay nanocomposite by in situ living radical polymerization. J Polym Sci Part A Polym Chem 49:1564–1571. https://doi.org/10.1002/pola.24577

    Article  CAS  Google Scholar 

  26. Ors JA, La Perriere DM (1986) Thermogravimetric profile of decomposition of acrylate systems based on bornyl acrylate monomers. Polymer 27:1999–2002. https://doi.org/10.1016/0032-3861(86)90197-7

    Article  CAS  Google Scholar 

  27. Ozlem S, Aslan-Gürel E, Rossi RM, Hacaloglu J (2013) Thermal degradation of poly(isobornyl acrylate) and its copolymer with poly(methyl methacrylate) via pyrolysis mass spectrometry. J Anal Appl Pyrolysis 100:17–25. https://doi.org/10.1016/j.jaap.2012.10.024

    Article  CAS  Google Scholar 

  28. Matsumoto A, Mizuta K, Otsu T (1993) Synthesis and thermal properties of poly(cycloalkyl methacrylate)s bearing bridged- and fused-ring structures. J Polym Sci Part A Polym Chem 31:2531–2539. https://doi.org/10.1002/pola.1993.080311014

    Article  CAS  Google Scholar 

  29. Qu J, Cheng J, Wang Z, Han X, Zhao M (2014) Synthesis, thermal and optical properties of crosslinked poly(isobornyl methacrylate-co-butyl acrylate) copolymer films. Opt Mater (Amst) 36:804–808. https://doi.org/10.1016/j.optmat.2013.11.030

    Article  CAS  Google Scholar 

  30. Vyazovkin S (2010) International Reviews in Physical Chemistry Kinetic concepts of thermally stimulated reactions in solids : A view from a historical perspective. 45–60. https://doi.org/10.1080/014423500229855

  31. Dollimore D, Tong P, Alexander KS (1996) The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochim Acta 282–283:13–27. https://doi.org/10.1016/0040-6031(95)02810-2

    Article  Google Scholar 

  32. Rosu C, Manaila-Maximean D, Paraskos AJ (2002) Thermally stimulated depolarization currents and optical transmission studies on a 3,4-dicyanothiophene-based bent-rod liquid crystal. Mod Phys Lett B 16:473–483. https://doi.org/10.1142/S021798490200397X

    Article  CAS  Google Scholar 

  33. Ganea CP, Manaila-Maximean D (2011) Liquid crystal/copolymer-clay nanostructured systems: contribution to the conductivity of the electrode polarization. UPB Sci Bull Series A. 73:209–216. https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full68673.pdf

  34. Pielichowski K, Njuguna J (2005) Thermal Degradation of Polymeric Materials. iSmithers Rapra Publishing, Shrewsbury, Shropshire, UK

  35. Hu YH, Chen CY, Wang CC (2004) Thermal degradation kinetics of poly(n-butyl acrylate) initiated by lactams and thiols. Polym Degrad Stab 84:505–514. https://doi.org/10.1016/j.polymdegradstab.2004.01.009

    Article  CAS  Google Scholar 

  36. Doğan F, Kaya İ, Yürekli M (2007) Kinetic of thermal degradation of poly(isobornyl methacrylate). Catal Letters 114:49–54. https://doi.org/10.1007/s10562-007-9041-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially accomplished in the framework of an international research program (PHC Tassili). The authors gratefully acknowledge the support of the Algerian Ministry of Higher Education and Scientific Research (MESRS), the General Directorate of Scientific Research and Technological Development (DGRSDT) of Algeria, CampusFrance, the University of Tlemcen/Algeria, the CNRS, and the University and the CROUS of Lille/France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Maschke.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 330 KB)

Appendix A

Appendix A

Table: Pyrolysis-GC/MS parameters used to perform pyrolysis experiments.

GC parameters

Oven temperature

40 °C

Colum flow

1.71 mL/min

Injector temperature

300 °C

Split ratio

1/100

Gas carrier

He

GC oven temperature program

(1) hold 95 min at 40 °C

(2) 40 °C to 320 °C at 10 °C/min

(3) hold 17 min at 320 °C

MS parameters

Source temperature

230 °C

Source type

Electron-Impact (EI) ionization source

m/z scan range

10—800

Software

GCMS real time analysis

F search (Frontier Lab)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merah, D., Bedjaoui, L., Zeggai, N. et al. Enhanced thermal stability of biobased crosslinked poly (isobornylacrylate-co-2-ethylhexylacrylate) copolymers. J Polym Res 29, 279 (2022). https://doi.org/10.1007/s10965-022-03139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03139-7

Keywords

Navigation