Skip to main content

Advertisement

Log in

Synthesis of bovine serum albumin-gelatin composite adhesive hydrogels by physical crosslinking

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, a series of bovine serum albumin-gelatin (BSA-Gel) adhesive hydrogels were synthesized via non-covalent interactions. We demonstrated possible tuning the properties, microstructure, thermal stability of hydrogels by varying BSA concentration and Gel molecular weight. Two Gel molecular weights were used, which was confirmed using gel permeation chromatography (GPC) (M1, Mw ≈ 105 kDa, M2, Mw ≈ 2.9 kDa). The lap shear test showed that adhesive strength of 45% BSA-20% Gel (M1) and 45% BSA-20% Gel (M2) on gelatin coated glass slides was 384.4 kPa and 357.9 kPa respectively, which was higher than pure 20% Gel (M1), 20% Gel (M2) of 306.1 kPa and 321 kPa respectively. SEM results demonstrated that BSA-Gel (M1) hydrogels had compact structure, while BSA-Gel (M2) hydrogels had porous structure. The 45% BSA-20% Gel (M1) hydrogel was stable more than 10 h at 37 °C, which was promising for applications in many biomedical areas such as tissue adhesive, wound dressing and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang WL, Zhang YW, Zhang YC, Dai Y, Xia F, Zhang XJ (2021) Adhesive and tough hydrogels: from structural design to applications. J Mater Chem B 9:5954–5966

    Article  CAS  PubMed  Google Scholar 

  2. Xiong YS, Zhang XR, Ma XT, Wang WQ, Yan FY, Zhao XH, Chu XX, Xu WL, Sun CM (2021) A review of the properties and applications of bioadhesive hydrogels. Polym Chem 12:3721–3739

    Article  CAS  Google Scholar 

  3. Liu Y, He WL, Zhang ZT, Lee BP (2018) Recent developments in tough hydrogels for biomedical applications. Gels 4:46

    Article  PubMed Central  CAS  Google Scholar 

  4. Guo CP, Zeng ZW, Yu S, Zhou XY, Liu QF, Pei DT, Lu DH, Geng ZJ (2021) Highly stretchable, compressible, adhesive hydrogels with double network. J Polym Res 28:417

    Article  CAS  Google Scholar 

  5. Fan XM, Wang SB, Fang Y, Li PY, Zhou WK, Wang ZC, Chen MF, Liu HQ (2020) Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Mat Sci Eng C-Mater 109:110649

    Article  CAS  Google Scholar 

  6. Han K, Bai Q, Wu WD, Sun N, Cui N, Lu TL (2021) Gelatin-based adhesive hydrogel with self-healing, hemostasis, and electrical conductivity. Int J Biol Macromol 183:2142–2151

    Article  CAS  PubMed  Google Scholar 

  7. Shen JF, Chang LM, Chen DY, Wang Y, Li WJ (2021) Cross-linking induced thermo-responsive self-healing hydrogel with gel-sol–gel transition constructed on dynamic covalent bond. J Polym Res 28:132

    Article  CAS  Google Scholar 

  8. Bu YZ, Zhang LC, Sun GF, Sun FF, Liu JH, Yang F, Tang PF, Wu DC (2019) Tetra-PEG based hydrogel sealants for in vivo visceral hemostasis. Adv Mater 31:1901580

    Article  CAS  Google Scholar 

  9. Song FY, Kong Y, Shao CY, Cheng Y, Lu J, Tao YA, Du J, Wang HS (2021) Chitosan-based multifunctional flexible hemostatic bio-hydrogel. Acta Biomater 136: 170–183

  10. Wang JH, Tsai CW, Tsai NY, Chiang CY, Lin RS, Pereira RF, Li YCE (2021) An injectable, dual crosslinkable hybrid pectin methacrylate (PECMA)/gelatin methacryloyl (GelMA) hydrogel for skin hemostasis applications. Int J Biol Macromol 185:441–450

    Article  CAS  PubMed  Google Scholar 

  11. Cao QC, Sun GF, Wang X, Yang F, Zhang LC, Wu DC (2021) Bioinspired self-degradable hydrogels towards wound sealing. Biomater Sci 9:3645–3649

    Article  CAS  PubMed  Google Scholar 

  12. Jumelle C, Yung A, Sani ES, Taketani Y, Gantin F, Bourel L, Wang SD, Yuksel E, Seneca S, Annabi N, Dana R (2022) Development and characterization of a hydrogel-based adhesive patch for sealing open-globe injuries. Acta Biomater 137:53–63

    Article  CAS  PubMed  Google Scholar 

  13. Balakrishnan B, Payanam U, Laurent A, Wassef M, Jayakrishnan A (2021) Efficacy evaluation of an in situ forming tissue adhesive hydrogel as sealant for lung and vascular injury. Biomed Mater 16:044106

    Article  CAS  Google Scholar 

  14. Han W, Zhou B, Yang K, Xiong X, Luan SF, Wang Y, Xu Z, Lei P, Luo ZS, Gao J (2020) Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing. Bioact Mater 5:768–778

    Article  PubMed  PubMed Central  Google Scholar 

  15. Annabi N, Zhang Y N, Assmann A, Sani E S, Cheng G, Lassaletta A D, Vegh A, Dehghani B, Ruiz-Esparza G U, Wang X C, Gangadharan S, Weiss A S, Khademhosseini A (2017) Engineering a highly elastic human protein-based sealant for surgical applications. Sci Transl Med 9:eaai7466

  16. Cao XX, Cai XJ, Chen RY, Zhang HM, Jiang T, Wang YN (2019) A thermosensitive chitosan-based hydrogel for sealing and lubricating purposes in dental implant system. Clin Implant Dent Relat Res 21:324–335

    Article  PubMed  Google Scholar 

  17. Zhang K, Chen X M, Xue Y, Lin JS, Liang XY, Zhang JJ, Chen GD, Cai CC, Liu J (2021) Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis and biointerfaces. Adv Funct Mater 2111465

  18. Cui CY, Wu TL, Gao F, Fan CC, Xu ZY, Wang HB, Liu B, Liu WG (2018) An autolytic high strength instant adhesive hydrogel for emergency self-rescue. Adv Funct Mater 28:1804925

    Article  CAS  Google Scholar 

  19. Freedman BR, Uzun O, Maldonado Luna NM, Rock A, Clifford C, Stoler E, Johnson C, Mooney DJ (2021) Degradable and removable tough adhesive hydrogels. Adv Mater 33:2008553

    Article  CAS  Google Scholar 

  20. Duarte AP, Coelho JF, Bordado JC, Cidade MT, Gil MH (2012) Surgical adhesives: Systematic review of the main types and development forecast. Prog Polym Sci 37:1031–1050

    Article  CAS  Google Scholar 

  21. Korde JM, Kandasubramanian B (2018) Biocompatible alkyl cyanoacrylates and their derivatives as bio-adhesives. Biomater Sci 6:1691–1711

    Article  CAS  PubMed  Google Scholar 

  22. Bao ZX, Gao MH, Sun Y, Nian R, Xian M (2020) The recent progress of tissue adhesives in design strategies, adhesive mechanism and applications. Mat Sci Eng C-Mater 111:110796

    Article  CAS  Google Scholar 

  23. Su K, Wang CM (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37:2139–2145

    Article  CAS  PubMed  Google Scholar 

  24. Sun J, Han JY, Wang F, Liu K, Zhang HJ (2021) Bioengineered protein-based adhesives for biomedical applications. Chem Eur J 27:1–14

    CAS  Google Scholar 

  25. Bouten PJM, Zonjee M, Bender J, Yauw STK, Goor H, van Hest JCM, Hoogenboom R (2014) The chemistry of tissue adhesive materials. Prog Polym Sci 39:1375–1405

    Article  CAS  Google Scholar 

  26. Maiti S, Khillar PS, Mishra D, Nambiraj NA, Jaiswal AK (2021) Physical and self-crosslinking mechanism and characterization of chitosan-gelatin-oxidized guar gum hydrogel. Polym Test 16: 044106

  27. Hu WK, Wang ZJ, Xiao Y, Zhang SM, Wang JL (2019) Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci 7:843

    Article  CAS  PubMed  Google Scholar 

  28. Ding XC, Wang YD (2017) Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications. J Mater Chem B 5:887

    Article  CAS  PubMed  Google Scholar 

  29. Labowska MB, Jankowska AM, Detyna J, Cierluk K, Kulbacka J, Michalak I (2021) A Review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Mat 14:858

    CAS  Google Scholar 

  30. Xing JY, Dang WW, Li JC, Huang JM, Bai B, Zheng D, Zhang X (2021) Synthesis of polypyrrole-modified gelatin/poly (acrylic acid) semi-interpenetrating network hydrogel and its controlled release of agrochemicals based on helix–coil transition of gelatin. J Polym Res 28:289

    Article  CAS  Google Scholar 

  31. Dodda JM, Azar MG, Sadiku R (2021) Crosslinking trends in multicomponent hydrogels for biomedical applications. Macromol Biosci 21:2100232

    Article  CAS  Google Scholar 

  32. Maiti S, Khillar PS, Mishra D, Nambiraj NA, Jaiswal AK (2021) Physical and self-crosslinking mechanism and characterization of chitosan-gelatin-oxidized guar gum hydrogel. Polym Test 97:107155

    Article  CAS  Google Scholar 

  33. Pettinelli N, Rodríguez-Llamazares S, Bouza R, Barral L, Feijoo-Bandín S, Lago F (2020) Carrageenan-based physically crosslinked injectable hydrogel for wound healing and tissue repairing applications. Int J Pharm 589:119828

    Article  CAS  PubMed  Google Scholar 

  34. Takei T, Yoshihara R, Danjo S, Fukuhara Y, Evans C, Tomimatsu R, Ohzuno Y, Yoshida M (2020) Hydrophobically-modified gelatin hydrogel as a carrier for charged hydrophilic drugs and hydrophobic drugs. Int J Biol Macromol 149:140–147

    Article  CAS  PubMed  Google Scholar 

  35. Tsai FC, Huang CF, Chang CJ, Lu CH, Chen JK (2020) Thermo-tunable pores and antibiotic gating properties of bovine skin gelatin gels prepared with poly(n-isopropylacrylamide) network. Polymers 12:2156

    Article  CAS  PubMed Central  Google Scholar 

  36. Zhang Z, Yang Y, Tang X, Chen Y, You Y (2015) Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chem 188:111–118

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Celiz AD, Yang J, Yang Q, Wamala I, Whyte W, Seo BR, Vasilyev NV, Vlassak JJ, Suo Z, Mooney DJ (2017) Tough adhesives for diverse wet surfaces. Science 357:378–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jung H, Kim MK, Lee JY, Choi SW, Kim J (2020) Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Adv Funct Mater 30:2004407

    Article  CAS  Google Scholar 

  40. Pathak J, Rawat K, Bohidar HB (2016) Thermo-reversibility, ergodicity and surface charge–temperature dependent phase diagram of anionic, cationic and neutral co-gels of gelatin–BSA complexes. RSC Adv 6:40123

    Article  CAS  Google Scholar 

  41. Semasaka C, Buckow R, Kasapis S Modeling counterion partition in composite gels of BSA with gelatin following thermal treatment. Food Hydrocoll 74: 97–103

  42. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenerg 1767:1073–1101

    Article  CAS  Google Scholar 

  43. Linlaud N, Ferrer E, Puppo MC, Ferrero C (2011) Hydrocolloid interaction with water, protein, and starch in wheat dough. J Agric Food Chem 59:713–719

    Article  CAS  PubMed  Google Scholar 

  44. Ahmady A, Samah NHA (2021) A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. Int J Pharm 608:121037

    Article  CAS  PubMed  Google Scholar 

  45. Amonpattaratkit P, Khunmanee S, Kim DH, Park H (2017) Synthesis and characterization of gelatin-based crosslinkers for the fabrication of superabsorbent hydrogels. Materials 10:826

    Article  PubMed Central  CAS  Google Scholar 

  46. Hosseinzadeh H, Abbasian M, Hassanzadeh S (2014) Synthesis, characterization and swelling behavior investigation of gelatin-g-poly(acrylic acid-co-itaconic acid). Iran Chem Commun 2:196–208

    Google Scholar 

  47. Duconseille A, Astruc T, Quintana N, Meersman F, Sante-Lhoutellier V (2015) Gelatin structure and composition linked to hard capsule dissolution: a review. Food Hydrocoll 43:360–376

    Article  CAS  Google Scholar 

  48. Sinthusamran S, Benjakul S, Kishimura H (2014) Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions. Food Chem 152:276–284

    Article  CAS  PubMed  Google Scholar 

  49. Cheng ZH, Zhang BJ, Qiao DL, Yan XL, Zhao SM, Jia CH, Niu M, Xu Y (2022) Addition of κ-carrageenan increases the strength and chewiness of gelatin-based composite gel. Food Hydrocoll 128:107565

    Article  CAS  Google Scholar 

  50. Netter AB, Goudoulas TB, Germann N (2020) Effects of bloom number on phase transition of gelatin determined by means of rheological characterization. Lwt-food Sci Technol 132:109813

    Article  CAS  Google Scholar 

  51. Casanova F, Mohammadifar MA, Jahromi M, Petersen HO, Sloth JJ, Eybye KL, Kobbelgaard S, Jakobsen G, Jessen F (2020) Physico-chemical, structural and techno-functional properties of gelatin from saithe (Pollachius virens) skin. Int J Biol Macromol 156:918–927

    Article  CAS  PubMed  Google Scholar 

  52. Xu MQ, Wei LX, Xiao YC, Bi HT, Yang HX, Du YZ (2017) Molecular structural properties of extracted gelatin from Yak skin as analysed based on molecular weight. Int J Food Prop 20:S543–S545

    Article  CAS  Google Scholar 

  53. Yu JH, Cheng BH, Ejima H (2020) Effect of molecular weight and polymer composition on gallol-functionalized underwater adhesive. J Mater Chem B 8:6798–6801

    Article  CAS  PubMed  Google Scholar 

  54. Cao WQ, Shi LF, Hao GX, Chen J, Weng WY (2021) Effect of molecular weight on the emulsion properties of microfluidized gelatin hydrolysates. Food Hydrocoll 111:106267

    Article  CAS  Google Scholar 

  55. Zhao X, Lang Q, Yildirimer L, Lin ZY, Cui W, Annabi N, Ng KW, Dokmeci MR, Ghaemmaghami AM, Khademhosseini A (2016) Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater 5:108–118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by special fund of Guangdong academy of sciences (No. 2020GDASYL-20200103042, No. 2019GDASYL-0103020, 2020GDASYL-20200102005 and 2021GDASYL-20210102004), National Natural Science Foundation of China (No. 21907037), Guangdong Research and Development Plan in Key Areas (No. 2020B1111560001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiping Guo.

Ethics declarations

Conflict of interest

The manuscript entitled “Synthesis of bovine serum albumin-gelatin composite adhesive hydrogels by physical crosslinking” by Cuiping Guo, Zhiwen Zeng, Shan Yu, Jun Huang, Zhijie Geng, Dating Pei and Daohuan Lu is not having any conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 350 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Zeng, Z., Yu, S. et al. Synthesis of bovine serum albumin-gelatin composite adhesive hydrogels by physical crosslinking. J Polym Res 29, 276 (2022). https://doi.org/10.1007/s10965-022-03130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03130-2

Keywords

Navigation