Skip to main content
Log in

Synthesis, optimization, characterization, and potential drug release application of nanocomposite hydrogel based on carboxymethyl cellulose-g-itaconic acid/acrylamide

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study synthesis of hydrogel and nanocomposite based on modified cellulose have been investigated. Hydrogels constitute a group of polymeric materials. The hydrophilic structure of which renders them capable of holding large amounts of water compared to their weight in their structure. As expected, natural hydrogels were gradually replaced by synthetic types due to their higher water absorption capacity, long service life, and wide varieties of raw chemical resources. Furthermore, the purpose of this work is to study the synthesis of a novel hydrogel based on carboxymethyl cellulose and acrylamide and itaconic acid. Synthesis carried out in aqueous medium, ammonium persulphate used as initiator and N, N-methylene bis acrylamide used as cross-linker. To study the morphological structure and characterize the synthesized hydrogel SEM, FTIR and TGA analysis carried out on the products. Results indicate that the water absorbency of the synthesize hydrogel is 67 g/g. The developed hydrogels have the potential to be used for biomedical use. To study the biomedical application drug release of hydrogel and nanocomposite have been studied and ofloxacin used as a drug model. Results showed a sustain control release of drug over 2.5 h from the synthesized hydrogel and 6 h from the CNT nanocomposite’s structure. The results of MTT assay performed on the synthesized hydrogel showed that the compound exhibits no toxicity at various concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  2. Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192

    Article  Google Scholar 

  3. Lutolf MP (2009) Spotlight on hydrogels. Nat Mater 8:451–453

    Article  CAS  Google Scholar 

  4. Sciences M, Popescu R, Ghica MV et al (2020) New opportunity to formulate intranasal vaccines and drug delivery systems based on Chitosan. Int J Mol Sci 21:1–23. https://doi.org/10.3390/ijms21145016

    Article  CAS  Google Scholar 

  5. Xu J, Wang H, Jiang L et al (2021) Preparation of cellulose hydrogel dressing with evenly dispersed hydrophobic drugs by hydrogen bonding and encapsulation methods. Macromol Mater Eng n/a:2100286. https://doi.org/10.1002/mame.202100286

    Article  CAS  Google Scholar 

  6. Slaughter BV, Khurshid SS, Fisher OZ et al (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  Google Scholar 

  7. Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32:733–742

    Article  CAS  Google Scholar 

  8. Tang L, Wang L, Yang X et al (2021) Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Prog Mater Sci 115:100702. https://doi.org/10.1016/j.pmatsci.2020.100702

    Article  CAS  Google Scholar 

  9. Liu X, Liu J, Lin S, Zhao X (2020) Hydrogel machines. Mater Today 36:102–124. https://doi.org/10.1016/j.mattod.2019.12.026

    Article  CAS  Google Scholar 

  10. Banivaheb S, Dan S, Hashemipour H, Kalantari M (2021) Synthesis of modified chitosan TiO2 and SiO2 hydrogel nanocomposites for cadmium removal. J Saudi Chem Soc 25:101283. https://doi.org/10.1016/j.jscs.2021.101283

    Article  CAS  Google Scholar 

  11. Ashrafizadeh M, Ahmadi Z, Mohamadi N et al (2020) Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics. Int J Biol Macromol 145:282–300. https://doi.org/10.1016/j.ijbiomac.2019.12.145

    Article  CAS  PubMed  Google Scholar 

  12. Cascone S, Lamberti G (2020) Hydrogel-based commercial products for biomedical applications: A review. Int J Pharm 573:118803. https://doi.org/10.1016/j.ijpharm.2019.118803

    Article  CAS  PubMed  Google Scholar 

  13. Richbourg NR, Peppas NA (2020) The swollen polymer network hypothesis: Quantitative models of hydrogel swelling, stiffness, and solute transport. Prog Polym Sci 105:101243. https://doi.org/10.1016/j.progpolymsci.2020.101243

    Article  CAS  Google Scholar 

  14. Turky G, Moussa MA, Hasanin M et al (2021) Carboxymethyl Cellulose-Based Hydrogel: Dielectric Study, Antimicrobial Activity and Biocompatibility. Arab J Sci Eng 46:17–30. https://doi.org/10.1007/s13369-020-04655-8

    Article  CAS  Google Scholar 

  15. Jafarigol E, Salehi MB, Mortaheb HR (2020) Preparation and assessment of electro-conductive poly(acrylamide-co-acrylic acid) carboxymethyl cellulose/reduced graphene oxide hydrogel with high viscoelasticity. Chem Eng Res Des 162:74–84. https://doi.org/10.1016/j.cherd.2020.07.020

    Article  CAS  Google Scholar 

  16. Kumar B, Priyadarshi R, Sauraj et al (2020) Nanoporous sodium carboxymethyl cellulose-g-poly (sodium acrylate)/FeCl3 hydrogel beads: Synthesis and characterization. Gels 6

  17. Kim Y, Jeong D, Shinde VV et al (2020) Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system. Int J Biol Macromol 163:824–832. https://doi.org/10.1016/j.ijbiomac.2020.07.071

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Zhu Y, Mu B et al (2021) Synthesis, characterization, and swelling behaviors of sodium carboxymethyl cellulose-g-poly(acrylic acid)/semi-coke superabsorbent. Polym Bull. https://doi.org/10.1007/s00289-021-03545-9

    Article  Google Scholar 

  19. Rajput RL, Narkhede JS, Mujumdar A, Naik JB (2020) Synthesis and evaluation of luliconazole loaded biodegradable nanogels prepared by pH-responsive Poly (acrylic acid) grafted Sodium Carboxymethyl Cellulose using amine based cross linker for topical targeting: In vitro and Ex vivo assessment. Polym Technol Mater 59:1654–1666. https://doi.org/10.1080/25740881.2020.1759633

    Article  CAS  Google Scholar 

  20. Masry BA, Shahr El-Din AM, Al-Aidy HA (2021) Ceric-ions redox initiating technique for Zirconium and Niobium separation through graft copolymerization of natural polysaccharides. Sep Sci Technol. https://doi.org/10.1080/01496395.2021.1919708

    Article  Google Scholar 

  21. Dan S, Kalantari M, Kamyabi A, Soltani M (2021) Synthesis of chitosan-g-itaconic acid hydrogel as an antibacterial drug carrier: optimization through RSM-CCD. Polym Bull 1–24

  22. Shamloo A, Aghababaie Z, Afjoul H et al (2021) Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. Int J Pharm 592:120068. https://doi.org/10.1016/j.ijpharm.2020.120068

    Article  CAS  PubMed  Google Scholar 

  23. Bagher Z, Ehterami A, Safdel MH et al (2020) Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J Drug Deliv Sci Technol 55:101379. https://doi.org/10.1016/j.jddst.2019.101379

    Article  CAS  Google Scholar 

  24. Rahnama H, Nouri Khorasani S, Aminoroaya A et al (2021) Facile preparation of chitosan-dopamine-inulin aldehyde hydrogel for drug delivery application. Int J Biol Macromol 185:716–724. https://doi.org/10.1016/j.ijbiomac.2021.06.199

    Article  CAS  PubMed  Google Scholar 

  25. Dan S, Banivaheb S, Hashemipour H, kalantari M, (2020) Synthesis, characterization and absorption study of chitosan-g-poly(acrylamide-co-itaconic acid) hydrogel. Polym Bull. https://doi.org/10.1007/s00289-020-03190-8

    Article  Google Scholar 

  26. Dan S, Banivaheb S, Hashemipour H (2021) Synthesis, characterization and absorption study of chitosan-g-poly (acrylamide-co-itaconic acid) hydrogel. Polym Bull 78:1887–1907

    Article  CAS  Google Scholar 

  27. Fathiraja P, Gopalrajan S, Karunanithi M et al (2021) Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film. Polym Bull. https://doi.org/10.1007/s00289-021-03797-5

    Article  Google Scholar 

  28. Pourjavadi A, Barzegar S, Zeidabadi F (2007) Synthesis and properties of biodegradable hydrogels of κ-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems. React Funct Polym 67:644–654. https://doi.org/10.1016/j.reactfunctpolym.2007.04.007

    Article  CAS  Google Scholar 

  29. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66:229–245. https://doi.org/10.1016/j.carbpol.2006.03.006

    Article  CAS  Google Scholar 

  30. Pourjavadi A, Mahdavinia GR (2006) Superabsorbency, pH-sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly(acrylamide) hydrogels. Turkish J Chem 30:595–608

    CAS  Google Scholar 

  31. Sood S, Gupta VK, Agarwal S et al (2017) Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly (lactic acid-co-itaconic acid) hydrogel. Int J Biol Macromol 101:612–620

    Article  CAS  Google Scholar 

  32. Pourjavadi A, Mahdavinia GR (2006) Superabsorbency, pH-sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly (acrylamide) hydrogels. Turkish J Chem 30:595–608

    CAS  Google Scholar 

  33. Yang F, Li G, He YG et al (2009) Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 78:95–99. https://doi.org/10.1016/j.carbpol.2009.04.004

    Article  CAS  Google Scholar 

  34. Huang Y, Lu J, Xiao C (2007) Thermal and mechanical properties of cationic guar gum/poly(acrylic acid) hydrogel membranes. Polym Degrad Stab 92:1072–1081. https://doi.org/10.1016/j.polymdegradstab.2007.02.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Kalantari.

Ethics declarations

Conflict of interest

The authors declare that, they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekari, G., Kalantari, M. & Hashemipour, H. Synthesis, optimization, characterization, and potential drug release application of nanocomposite hydrogel based on carboxymethyl cellulose-g-itaconic acid/acrylamide. J Polym Res 29, 292 (2022). https://doi.org/10.1007/s10965-022-03127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03127-x

Keywords

Navigation