Skip to main content
Log in

Investigation on the crystallization behavior and detail spherulitic morphology of two crystal forms of thermoplastic polyurethanes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Crystallization behavior and morphology of two crystal forms growing from thermoplastic polyurethane (TPU) melt in films have been studied by polarized light optical microscopy, atomic force microscopy, and scanning electron microscope. By analyzing the relative amounts of two crystal forms at different isothermal crystallization temperatures (Tc) and their melting point, it was found that due to better thermodynamic stability of Form-II, it favorable to generate Form-II with mixed birefringence at high Tc, while owing to the kinetic favor at low Tc, Form-I with zero birefringence mainly developed. The cross nucleation, Form-II nucleate on the periphery of Form-I, was found to occur at relatively low Tc and result in the steady increase of crystal height. Two crystal forms displayed dendrites radiating from the spherulite center to the surrounding but different crystal height. Thus the cause of Form-I displaying zero birefringence was believed to be that the lamellar arrangemernt have no preferred orientation along film thickness direction, which result in the lower crystal height of Form-I. With increasing Tc, morphology of Form-II changed from spherulite to axialite. Interestingly, there were some tangentially grown lamellae bringing mixed birefringence to Form-II spherulites generated at large supercooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiang Q, Liao X, Li J, Chen J, Wang G, Yi J, Yang Q, Li G (2019) Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos Part A Appl Sci Manuf 123:310–319

    Article  CAS  Google Scholar 

  2. Li J, Liao X, Han W, Xiao W, Ye J, Yang Q, Li G, Ran Q (2017) Microcellular nanocomposites based on millable polyurethane and nano-silica by two-step curing and solid-state supercritical CO 2 foaming: Preparation, high-pressure viscoelasticity and mechanical properties. J Supercrit Fluids 130:198–209

    Article  CAS  Google Scholar 

  3. Wang W, Liao X, Guo F, Wang G, Yan Z, Liu F, Li G (2020) Facile fabrication of lightweight shape memory thermoplastic polyurethane/polylactide foams by supercritical carbon dioxide foaming. Ind Eng Chem Res 59:7611–7623

    Article  CAS  Google Scholar 

  4. Ying WB, Wang G, Kong Z, Yao CK, Wang Y, Hu H, Li F, Chen C, Tian Y, Zhang J, Zhang R, Zhu J (2021) A biologically muscle-inspired polyurethane with super-tough, thermal reparable and self-Healing capabilities for stretchable electronics. Adv Funct Mater 31:2009869

    Article  CAS  Google Scholar 

  5. Yeh S-K, Rangappa R, Hsu T-H, Utomo S (2021) Effect of extrusion on the foaming behavior of thermoplastic polyurethane with different hard segments. J Polym Res 28:244

    Article  CAS  Google Scholar 

  6. Sun L, Wang TX, Leow WC, Huang WM, Cui H, Gao XY (2016) Temperature memory effect in differential scanning calorimeter test in thermoplastic polyurethane. J Polym Res 23:63

    Article  Google Scholar 

  7. Mi H-Y, Jing X, Salick MR, Cordie TM, Peng X-F, Turng L-S (2014) Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: effects of fabrication approaches and hydroxyapatite size. J Mater Sci 49:2324–2337

    Article  CAS  Google Scholar 

  8. Lu X, Wei X, Huang J, Yang L, Zhang G, He G, Wang M, Qu J (2014) Supertoughened poly (lactic acid)/polyurethane blend material by in situ reactive interfacial compatibilization via dynamic vulcanization. Ind Eng Chem Res 53:17386–17393

    Article  CAS  Google Scholar 

  9. Saiani A, Daunch WA, Verbeke H, Leenslag JW, Higgins JSJM (2001) Origin of multiple melting endotherms in a high hard block content polyurethane. 1. Thermodynamic investigation. Macromolecules 34:9059–9068

    Article  CAS  Google Scholar 

  10. Jiang L, Wu J, Nedolisa C, Saiani A, Assender HE (2015) Phase separation and crystallization in high hard block content polyurethane thin films. Macromolecules 48:5358–5366

    Article  CAS  Google Scholar 

  11. Sui T, Baimpas N, Dolbnya IP, Prisacariu C, Korsunsky AM (2015) Multiple-length-scale deformation analysis in a thermoplastic polyurethane. Nat Commun 6:6583

    Article  Google Scholar 

  12. Liu W-K, Zhao Y, Wang R, Luo F, Li J-S, Li J-H, Tan H (2018) Effect of chain extender on hydrogen bond and microphase structure of biodegradable thermoplastic polyurethanes. Chin J Polym Sci 36:514–520

    Article  CAS  Google Scholar 

  13. Foks J, Janik H, Russo R (1990) Morphology, thermal and mechanical properties of solution-cast polyurethane films. Eur Polym J 26:309–314

    Article  CAS  Google Scholar 

  14. Yilgör I, Yilgör E, Wilkes GL (2015) Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer 58:A1–A36

    Article  Google Scholar 

  15. Balko J, Fernández-d’Arlas B, Pöselt E, Dabbous R, Müller AJ, Thurn-Albrecht T (2017) Clarifying the origin of multiple melting of segmented thermoplastic polyurethanes by fast scanning calorimetry. Macromolecules 50:7672–7680

    Article  CAS  Google Scholar 

  16. Stribeck A, Eling B, Pöselt E, Malfois M, Schander E (2019) Melting, solidification, and crystallization of a thermoplastic polyurethane as a function of hard segment content. Macromol Chem Phys 220:1900074

    Article  Google Scholar 

  17. Briber RM, Thomas EL (1983) Investigation of two crystal forms in MDI/BDO-based polyurethanes. J Macromol Sci Part B-Phys 22:509–528

    Article  Google Scholar 

  18. Briber RM, Thomas EL (1985) The structure of MDI/BDO-based polyurethanes: Diffraction studies on model compounds and oriented thin films. J Polym Sci Polym Phys Ed 23:1915–1932

    Article  CAS  Google Scholar 

  19. Li X, Lu Y, Wang H, Pöselt E, Eling B, Men Y (2017) Crystallization of hard segments in MDI/BD-based polyurethanes deformed at elevated temperature and their dependence on the MDI/BD content. Eur Polym J 97:423–436

    Article  CAS  Google Scholar 

  20. Li X, Wang H, Xiong B, Pöselt E, Eling B, Men Y (2019) Destruction and reorganization of physically cross-linked network of thermoplastic polyurethane depending on its glass transition temperature. ACS Applied Polymer Materials 1:3074–3083

    Article  CAS  Google Scholar 

  21. Chang AL, Briber RM, Thomas EL, Zdrahala RJ, Critchfield FE (1982) Morphological study of the structure developed during the polymerization of a series of segmented polyurethanes. Polymer 23:1060–1068

    Article  CAS  Google Scholar 

  22. Koberstein JT, Galambos AF (1992) Multiple melting in segmented polyurethane block copolymers. Macromolecules 25:5618–5624

    Article  CAS  Google Scholar 

  23. Foks J, Michler G, Nauman IJP (1987) Determination of lamellae in segmented polyurethanes by electron microscopy. Polymer 28:2195–2199

    Article  CAS  Google Scholar 

  24. Hood MA, Wang B, Sands JM, La Scala JJ, Beyer FL, Li CY (2010) Morphology control of segmented polyurethanes by crystallization of hard and soft segments. Polymer 51:2191–2198

    Article  CAS  Google Scholar 

  25. Fernández-d’Arlas B, Baumann RP, Pöselt E, Müller AJ (2017) Influence of composition on the isothermal crystallisation of segmented thermoplastic polyurethanes. CrystEngComm 19:4720–4733

    Article  Google Scholar 

  26. Zhang S, Wang Z, Guo B, Xu J (2021) Secondary nucleation in polymer crystallization: A kinetic view. Polym Crystallization 4:e10173

    CAS  Google Scholar 

  27. Liu J, Ye H-M, Xu J, Guo B-H (2011) Formation of ring-banded spherulites of α and β modifications in Poly(butylene adipate). Polymer 52:4619–4630

    Article  CAS  Google Scholar 

  28. Cavallo D, Galli F, Yu L, Alfonso GC (2017) Cross-nucleation between concomitantly crystallizing α- and γ-phases in polypivalolactone: Secondary nucleation of one polymorph on another. Cryst Growth Des 17:2639–2645

    Article  CAS  Google Scholar 

  29. Nagarajan S, Woo EM (2020) Morphological analyses evidencing corrugate-grating lamellae assembly in banded spherulites of Poly(ethylene adipate). Polymer 188:122141

    Article  CAS  Google Scholar 

  30. Wu C-N, Woo EM, Nagarajan S (2021) Periodic crystal assembly of Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid): From surface to interior microstructure. Polymer 123866

  31. Shi W, Yang J, Zhang Y, Luo J, Liang Y, Han CC (2012) Lamellar orientation inversion under dynamic interplay between crystallization and phase separation. Macromolecules 45:941–950

    Article  CAS  Google Scholar 

  32. Yeh Y-T, Woo EM (2018) Anatomy into interior lamellar assembly in nuclei-dependent diversified morphologies of poly(l-lactic acid). Macromolecules 51:7722–7733

    Article  CAS  Google Scholar 

  33. Luo F, Geng C, Wang K, Deng H, Chen F, Fu Q, Na B (2009) New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology. Macromolecules 42:9325–9331

    Article  CAS  Google Scholar 

  34. Zhou J-J, Liu J-G, Yan S-K, Dong J-Y, Li L, Chan C-M, Schultz JM (2005) Atomic force microscopy study of the lamellar growth of isotactic polypropylene. Polymer 46:4077–4087

    Article  CAS  Google Scholar 

  35. Murase SK, Casas MT, Martínez JC, Estrany F, Franco L, Puiggalí J (2015) Reversible changes induced by temperature in the spherulitic birefringence of nylon 6 9. Polymer 76:34–45

    Article  CAS  Google Scholar 

  36. Kong Z, Ying WB, Hu H, Wang K, Chen C, Tian Y, Li F, Zhang R (2020) Formation of crystal-like structure and effective hard domain in a thermoplastic polyurethane. Polymer 210:123012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support of the National Natural Science Foundation of China (No. 52173039), the Fundamental Research Funds for the Central Universities of China and the Programmer of Introducing Talents of Discipline to Universities (No. B13040). Authors thank Jiaxin Wu for helping to draw the schematic diagram of mixed birefringence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to infuence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3341 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Li, S., Liao, X. et al. Investigation on the crystallization behavior and detail spherulitic morphology of two crystal forms of thermoplastic polyurethanes. J Polym Res 29, 262 (2022). https://doi.org/10.1007/s10965-022-03112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03112-4

Keywords

Navigation