Skip to main content
Log in

Polypyrrole-functionalized g-C3N4 for rheological, combustion and self-healing properties of thermoplastic polyurethane

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

It is a challenge to manufacture multifunctional, two-dimensional, nanosized additive for polymer by a simple and universal method. Herein, a phytic acid-doped polypyrrole shell was successfully grown on the surface of exfoliated g-C3N4 nanosheets (CNPPy) by an in-situ polymerization method. CNPPy was directly incorporated into thermoplastic polyurethane (TPU) to prepare multifunctional TPU nanocomposites with near-infrared (NIR) induced self-healing properties. Rheological analysis showed that the combination of carbon nitride and polypyrrole formed a stable network in the TPU matrix. Compared to pure TPU, the incorporation of 3 wt% CNPPy into TPU exhibited 43.4% lower peak heat release rate and 53.4% lower peak smoke release rate. In addition, the mechanical performance of the CNPPy-TPU nanocomposite remain basically unchanged. Meanwhile, the tensile strength of a cut composite was restored to 31.3% in 45 s via NIR. The strategy of in-situ polymerization of conjugated polymers on the surface of two-dimensional nanosheets enables polyurethane composites with both improved rheological and self-healing properties and broadens the application field of two-dimensional nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu HD, Song L, Hu Y (2011) A review on flame retardant technology in china. Part ii: flame retardant polymeric nanocomposites and coatings. Polym Advan Technol 22:379–394

    Article  CAS  Google Scholar 

  2. Chen L, Wang YZ (2010) A review on flame retardant technology in china. Part i: development of flame retardants. Polym Advan Technol 21:1–26

    Article  Google Scholar 

  3. Oleszek S, Kumagai S, Grabda M, Shiota K, Yoshioka T, Takaoka M (2021) Mitigation of bromine-containing products during pyrolysis of polycarbonate-based tetrabromobisphenol a in the presence of copper (i) oxide. J Hazard Mater 409:124972

    Article  CAS  Google Scholar 

  4. Zhang ZX, Dai XR, Luo P, Sinha TK, Kim JK, Li H (2019) Lightweight, elastomeric, and flame-retardant foams from expanded chlorinated polymers. Macromol Mater Eng 304:1900145

    Article  Google Scholar 

  5. Allcock H, Taylor J (2000) Phosphorylation of phosphazenes and its effects on thermal properties and fire retardant behavior. Polym Eng Sci 40:1177–1189

    Article  CAS  Google Scholar 

  6. Liu JC, He YP, Chang HB, Guo YB, Li H, Pan BL (2020) Simultaneously improving flame retardancy, water and acid resistance of ethylene vinyl acetate copolymer by introducing magnesium hydroxide/red phosphorus co-microcapsule and carbon nanotube. Polym Degrad Stabil 171:109051

    Article  CAS  Google Scholar 

  7. Feng YZ, He CG, Wen YF, Ye YS, Zhou XP, Xie XL, Mai Y (2017) Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Compos A Appl Sci Manuf 103:74–83

    Article  CAS  Google Scholar 

  8. Chen XL, Wang K, Gu YX, Jiao CM, Liang HJ, Li SX (2021) Influence of nickel citrate in flame retardant thermoplastic polyurethane elastomer composites based on ammonium polyphosphate. Express Polym Lett 15:445–458

    Article  CAS  Google Scholar 

  9. Markwart JC, Battig A, Velencoso MM, Pollok D, Schartel B, Wurm FR (2019) Aromatic vs. Aliphatic hyperbranched polyphosphoesters as flame retardants in epoxy resins. Molecules 24:3901

    Article  CAS  Google Scholar 

  10. Wendels S, Chavez T, Bonnet M, Salmeia K, Gaan S (2017) Recent developments in organophosphorus flame retardants containing p-c bond and their applications. Materials 10:784

    Article  Google Scholar 

  11. Lu SL, Shen BT, Chen XD (2021) Construction of charring-functional polyheptanazine towards improvements in flame retardants of polyurethane. Molecules 26:340

    Article  CAS  Google Scholar 

  12. Lu SL, Hong W, Chen XD (2019) Nanoreinforcements of two-dimensional nanomaterials for flame retardant polymeric composites: an overview. Adv Polym Tech 2019:1–25

    Article  Google Scholar 

  13. Shi YQ, Yu B, Duan LJ, Gui Z, Wang BB, Hu Y, Yuen RKK (2017) Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J Hazard Mater 332:87–96

    Article  CAS  Google Scholar 

  14. Lu SL, Zhou W, Yang MJ, Chen GJ, Hong W, Yu DS, Zheng ZK, Chen XD (2019) Preparation and flame-retardant mechanism of polyheptazine/pa6 nanocmposites. Polymer 182:121810

    Article  Google Scholar 

  15. Zhou KQ, Liu CK, Gao R (2018) Polyaniline: a novel bridge to reduce the fire hazards of epoxy composites. Compos A Appl Sci Manuf 112:432–443

    Article  CAS  Google Scholar 

  16. Shi YQ, Long Z, Yu B, Zhou KQ, Gui Z, Yuen RKK, Hu Y (2015) Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes. J Mater Cbem A 3:1764–1773

    Google Scholar 

  17. Wang JL, Zhang DC, Zhang Y, Cai W, Yao CX, Hu Y, Hu WZ (2019) Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (co and hcn) generation and fire hazard of thermoplastic polyurethane. J Hazard Mater 362:482–494

    Article  CAS  Google Scholar 

  18. Jiao CM, Wang HZ, Chen XL (2019) An efficient flame-retardant and smoke-suppressant agent by coated hollow glass microspheres with ammonium molybdophosphate for thermoplastic polyurethane. J Therm Anal Calorim 137:1579–1589

    Article  CAS  Google Scholar 

  19. Ha Y, Kim Y, Ahn S, Lee S, Lee J, Park M, Chung JW, Jung YC (2019) Robust and stretchable self-healing polyurethane based on polycarbonate diol with different soft-segment molecular weight for flexible devices. Eur Polym J 118:36–44

    Article  CAS  Google Scholar 

  20. Kotal M, Srivastava SK, Paramanik B (2010) Enhancements in conductivity and thermal stabilities of polypyrrole/polyurethane nanoblends. J Phys Chem C 115:1496–1505

    Article  Google Scholar 

  21. Attia NF (2017) Organic nanoparticles as promising flame retardant materials for thermoplastic polymers. J Therm Anal Calorim 127:2273–2282

    Article  CAS  Google Scholar 

  22. Attia NF, El Ebissy AA, Hassan MA (2015) Novel synthesis and characterization of conductive and flame retardant textile fabrics. Polym Advan Technol 26:1551–1557

    Article  CAS  Google Scholar 

  23. Dai HX, Wang N, Wang DL, Ma HY, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of cd(ii) and pb(ii). Chem Eng J 299:150–155

    Article  CAS  Google Scholar 

  24. Sui Y, Liu JH, Zhang YW, Tian XK, Chen W (2013) Dispersed conductive polymer nanoparticles on graphitic carbon nitride for enhanced solar-driven hydrogen evolution from pure water. Nanoscale 5:9150

    Article  CAS  Google Scholar 

  25. Liu Y, Zhang H, Lu YF, Wu J, Xin BF (2016) A simple method to prepare g-c3n4/ag-polypyrrole composites with enhanced visible-light photocatalytic activity. Catal Commun 87:41–44

    Article  CAS  Google Scholar 

  26. Li Q, Xu D, Guo JN, Ou X, Yan F (2017) Protonated g-c3n4@polypyrrole derived n-doped porous carbon for supercapacitors and oxygen electrocatalysis. Carbon 124:599–610

    Article  CAS  Google Scholar 

  27. Zha ZB, Yue X, Ren QS, Dai ZF (2013) Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25:777–782

    Article  CAS  Google Scholar 

  28. Wu HH, Sheng DK, Liu XD, Zhou Y, Dong L, Ji FC, Xu SB, Yang YM (2020) Nir induced self-healing polyurethane/polypyrrole nanocomposites. Polymer 189:122181

    Article  CAS  Google Scholar 

  29. Yao TJ, Lin Q, Zhang K, Zhao DF, Lv H, Zhang JH, Yang B (2007) Preparation of sio2@polystyrene@polypyrrole sandwich composites and hollow polypyrrole capsules with movable sio2 spheres inside. J Colloid Interf Sci 315:434–438

    Article  CAS  Google Scholar 

  30. Cui LF, Shen J, Cheng FY, Tao ZL, Chen J (2011) Sno2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J Power Sources 196:2195–2201

    Article  CAS  Google Scholar 

  31. Lei YH, Sheng N, Hyono A, Ueda M, Ohtsuka T (2013) Electrochemical synthesis of polypyrrole films on copper from phytic solution for corrosion protection. Corros Sci 76:302–309

    Article  CAS  Google Scholar 

  32. Liu BJ, Robertson GP, Guiver MD, Shi Z, Navessin T, Holdcroft S (2006) Fluorinated poly(aryl ether) containing a 4-bromophenyl pendant group and its phosphonated derivative. Macromol Rapid Comm 27:1411–1417

    Article  CAS  Google Scholar 

  33. Niu P, Zhang LL, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  CAS  Google Scholar 

  34. Yang PJ, Ou HH, Fang YX, Wang XC (2017) A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis. Angew Chem Int Ed 56:3992–3996

    Article  CAS  Google Scholar 

  35. Yang HF, Guan YY, Ye L, Wang S, Li SX, Wen X, Chen XC, Mijowska E, Tang T (2019) Synergistic effect of nanoscale carbon black and ammonium polyphosphate on improving thermal stability and flame retardancy of polypropylene: a reactive network for strengthening carbon layer. Compos Part B: Eng 174:107038

    Article  Google Scholar 

  36. Yang HF, Gong J, Wen X, Xue J, Chen Q, Jiang ZW, Tian NN, Tang T (2015) Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos Sci Technol 113:31–37

    Article  CAS  Google Scholar 

  37. Mun SC, Kim M, Prakashan K, Jung HJ, Son Y, Park OO (2014) A new approach to determine rheological percolation of carbon nanotubes in microstructured polymer matrices. Carbon 67:64–71

    Article  CAS  Google Scholar 

  38. Ji XY, Chen DY, Wang QW, Shen JB, Guo SY (2018) Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane. Compos Sci Technol 163:49–55

    Article  CAS  Google Scholar 

  39. Lu MG, Lee JY, Shim MJ, Kim SW (2002) Thermal degradation of film cast from aqueous polyurethane dispersions. J Appl Polym Sci 85:2552–2558

    Article  CAS  Google Scholar 

  40. Rueda-Larraz L, d’Arlas BF, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Synthesis and microstructure-mechanical property relationships of segmented polyurethanes based on a pcl-pthf-pcl block copolymer as soft segment. Eur Polym J 45:2096–2109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFB0308600).

Author information

Authors and Affiliations

Authors

Contributions

Shaolin Lu: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing–original draft. Haixian Shi: Resources, Investigation. Botao Shen: Resources, Data curation. Wei Hong: Writing–review & editing, Visualization, Supervision. Dingshan Yu: Writing–review & editing. Xudong Chen: Writing–review & editing, Supervision.

Corresponding author

Correspondence to Xudong Chen.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Shi, H., Shen, B. et al. Polypyrrole-functionalized g-C3N4 for rheological, combustion and self-healing properties of thermoplastic polyurethane. J Polym Res 29, 263 (2022). https://doi.org/10.1007/s10965-022-03046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03046-x

Keywords

Navigation