Skip to main content
Log in

Neohexene graphitic nanoplatelets for reinforced low-density polyethylene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

As a new filler, neohexene graphitic nanoplatelets (NeHGNs), is prepared firstly by using ball milling with solid graphite and liquid neohexene. The characteristics of NeHGNs are confirmed using a variety of analytic techniques. Due to the exceptional dispersion in organic solvents (e.g. xylene) and the good affinity with low-density polyethylene (LDPE), the NeHGN/LDPE_X (NeHGNs content (X) = 0.5, 1, or 2) nanocomposites are made easily through a solution procedure. Thus, the NeHGNs play as a competent filler for LDPE due to its outstanding properties and a chemical affinity between neohexene-functional groups and LDPE. In result, the NeHGN/LDPE_X nanocomposites show significantly improved mechanical properties (i.e., tensile strength and Young’s modulus) and thermal stability compared to the pure LDPE. Thus, considering excellent performances and competitive price, the NeHGNs are recognized as a new prospective reinforcing filler for a variety of polyolefins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang HD, Zhou SY, Ren PG et al (2015) Improved mechanical and barrier properties of low-density polyethylene nanocomposite films by incorporating hydrophobic graphene oxide nanosheets. RSC Adv 5(98):80739–80748

    Article  CAS  Google Scholar 

  2. Le MT, Huang SC (2015) Thermal and mechanical behavior of hybrid polymer nanocomposite reinforced with graphene nanoplatelets. Materials 8(8):5526–5536

    Article  CAS  Google Scholar 

  3. Qian Y, Wu H, Yuan D et al (2015) In situ polymerization of polyimide-based nanocomposites via covalent incorporation of functionalized graphene nanosheets for enhancing mechanical, thermal, and electrical properties. J Appl Polym Sci 132(44):42724–42734

    Article  Google Scholar 

  4. Chen S, Lv S, Hou G et al (2015) Mechanical and thermal properties of biphenyldiol formaldehyde resin/gallic acid epoxy composites enhanced by graphene oxide. J Appl Polym Sci 132(41):42637–42648

    Article  Google Scholar 

  5. Wang F, Zhang Y, Zhang BB et al (2015) Enhanced electrical conductivity and mechanical properties of ABS/EPDM composites filled with graphene. Compos B Eng 83(15):66–74

    Article  CAS  Google Scholar 

  6. Xu W, Zhang B, Wang X et al (2018) The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin. J Hazard Mater 343:364–375

    Article  CAS  Google Scholar 

  7. Feng Y, He C, Wen Y et al (2018) Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J Hazard Mater 346:140–151

    Article  CAS  Google Scholar 

  8. Chaudhry AU, Mittal V (2013) High-density polyethylene nanocomposites using masterbatches of chlorinated polyethylene/graphene oxide. Polym Eng Sci 53(1):78–88

    Article  CAS  Google Scholar 

  9. Maniadi A, Vamvakaki M, Suchea M et al (2020) Effect of graphene nanoplatelets on the structure, the morphology, and the dielectric behavior of low-density polyethylene nanocomposites. Materials 13(21):4776

    Article  CAS  Google Scholar 

  10. Yuan B, Fan A, Yang M et al (2017) The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stab 143:42–56

    Article  CAS  Google Scholar 

  11. Sabet M, Soleimani H, Hassan A, Ratnam CT (2014) Electron beam irradiation of LDPE filled with calcium carbonate and metal hydroxides. Polym Plast Technol Eng 53(13):1362–1366

    Article  CAS  Google Scholar 

  12. Feng Y, He C, Wen Y et al (2017) Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Compos Part A Appl Sci Manuf 103:74–83

    Article  CAS  Google Scholar 

  13. Wang X, Sun G, Routh P et al (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098

    Article  CAS  Google Scholar 

  14. Guan LZ, Wan YJ, Gong LX et al (2014) Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. J Mater Chem A 2(36):15058–15069

    Article  CAS  Google Scholar 

  15. Barber AH, Cohen SR, Wagner HD (2003) Measurement of carbon nanotube–polymer interfacial strength. Appl Phys Lett 82(23):4140–4142

    Article  CAS  Google Scholar 

  16. Wei P, Bai S (2015) Fabrication of a high-density polyethylene/graphene composite with high exfoliation and high mechanical performance via solid-state shear milling. RSC Adv 5(114):93697–93705

    Article  CAS  Google Scholar 

  17. Konios D, Stylianakis MM, Stratakis E, Kymakis E (2014) Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 430:108–112

    Article  CAS  Google Scholar 

  18. Abbas SS, Rees GJ, Patias G et al (2020) In situ cross-linking of silane functionalized reduced graphene oxide and low-density polyethylene. ACS Appl Polym Mater 2(5):1897–1908

    Article  CAS  Google Scholar 

  19. Kang YA, Kim MH, Noh HJ et al (2021) Reinforcement of polystyrene using edge-styrene graphitic nanoplatelets. J Mater Res Technol 10:662–670

    Article  CAS  Google Scholar 

  20. Song HD, Im YK, Baek JB, Jeon IY (2020) Heptene-functionalized graphitic nanoplatelets for high-performance composites of linear low-density polyethylene. Compos Sci Technol 199:108380

  21. Kim MH, Kang YA, Noh HJ et al (2021) Direct preparation of edge-propylene graphitic nanoplatelets and its reinforcing effects in polypropylene. Compos Commun 27:100896

  22. Jeon IY, Shin YR, Sohn GJ et al (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA 109(15):5588–5593

    Article  CAS  Google Scholar 

  23. Jeon IY, Choi HJ, Jung SM et al (2013) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135(4):1386–1393

    Article  CAS  Google Scholar 

  24. Kim MJ, Jeon IY, Seo JM et al (2014) Graphene phosphonic acid as an efficient flame retardant. ACS Nano 8(3):2820–2825

    Article  CAS  Google Scholar 

  25. Jeon IY, Zhang S, Zhang L et al (2013) Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. Adv Mater 25(42):6138–6145

    Article  CAS  Google Scholar 

  26. Jeon IY, Choi M, Choi HJ et al (2015) Antimony-doped graphene nanoplatelets Nat Commun 6(1):7123

    PubMed  Google Scholar 

  27. Allouche A, Ferro Y (2006) Dissociative adsorption of small molecules at vacancies on the graphite (0001) surface. Carbon 44(15):3320–3327

    Article  CAS  Google Scholar 

  28. Al-Gaashani R, Najjar A, Zakaria Y et al (2019) XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram Int 45(11):14439–14448

    Article  CAS  Google Scholar 

  29. Jeon IY, Choi HJ, Ju MJ et al (2013) Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci Rep 3(1):2260

    Article  Google Scholar 

  30. Fang Y, Gu D, Zou Y et al (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 122(43):8159–8163

    Article  Google Scholar 

  31. Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chem Ing Tech 82(7):1059–1073

    Article  CAS  Google Scholar 

  32. Feng C, Ni H, Chen J, Yang W (2016) Facile method to fabricate highly thermally conductive graphite/pp composite with network structures. ACS Appl Mater Interfaces 8(30):19732–19738

    Article  CAS  Google Scholar 

  33. Jeon IY, Yu D, Bae SY et al (2011) Formation of large-area nitrogen-doped graphene film prepared from simple solution casting of edge-selectively functionalized graphite and its electrocatalytic activity. Chem Mater 23(17):3987–3992

    Article  CAS  Google Scholar 

  34. Wang E, Dong Y, Islam MZ et al (2019) Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos Sci Technol 169:209–216

    Article  CAS  Google Scholar 

  35. Lei H, Liu Z, He C et al (2016) Graphene enhanced low-density polyethylene by pretreatment and melt compounding. RSC Adv 6(103):101492–101500

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research programs through the National Research Foundation (NRF) of Korea, funded by the Ministry of Education (2021R1F1A1046555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Yup Jeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4191 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.H., Noh, HJ., Baek, JB. et al. Neohexene graphitic nanoplatelets for reinforced low-density polyethylene. J Polym Res 29, 129 (2022). https://doi.org/10.1007/s10965-022-02980-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02980-0

Keywords

Navigation