Skip to main content
Log in

Eco-friendly synthesis of graphene nanoplatelets via a carbonation route and its reinforcement for polytetrafluoroethylene composites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, graphene nanoplatelets (GNPs) with spindle-like CaCO3 (CGNP) deposited on their surface were used as fillers to produce CGNPs/polytetrafluoroethylene nanocomposites. The CGNPs and their nanocomposites were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and differential scanning calorimetry. The effect of the CGNPs on the mechanical, electrical, and frictional properties of the nanocomposites was also investigated and discussed. It is found that the tensile strength and elongation at break of the nanocomposites are improved by 44 and 26%, respectively, at a percolation threshold of 1 wt% due to the heterogeneous nucleation of CGNPs. The electrical conductivities of the nanocomposites increase with increasing the loading of CGNPs, and the conductive network of the nanocomposites starts to form when the filler loading up to 10 wt%, which is revealed by Raman mapping. The frictional properties of the nanocomposites also increase with increasing CGNP loading due to the well distribution and interfacial interaction between CGNPs and PTFE matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao ZH, Chen JN (2011) Compos Part B Eng 42(5):1306–1310

    Article  Google Scholar 

  2. Lee JY, Lim DP, Lim DS (2007) Compos Part B Eng 38(7–8):810–816

    Article  Google Scholar 

  3. Rae PJ, Brown EN (2005) Polymer 46(19):8128–8140

    Article  Google Scholar 

  4. Riul C, Tita V, de Carvalho J, Canto RB (2012) Compos Sci Technol 72(12):1451–1458

    Article  Google Scholar 

  5. Jia ZN, Yang YL (2012) Compos Part B Eng 43(4):2072–2078

    Article  Google Scholar 

  6. Vail JR, Burris DL, Sawyer WG (2009) Wear 267(1–4):619–624

    Article  Google Scholar 

  7. Chen YC, Lin HC, Lee YD (2003) J Polym Res 10(4):247–258

    Article  Google Scholar 

  8. Sawyer WG, Freudenberg KD, Bhimaraj P, Schadler LS (2003) Wear 254(5–6):573–580

    Article  Google Scholar 

  9. Chen WX, Li F, Han G, Xia JB, Wang LY, Tu JP, Xu ZD (2003) Tribol Lett 15(3):275–278

    Article  Google Scholar 

  10. Show Y, Takahashi K (2009) J Power Sources 190(2):322–325

    Article  Google Scholar 

  11. Feng X, Diao XS, Shi YJ, Wang HY, Sun SH, Lu XH (2006) Wear 261(11–12):1208–1212

    Article  Google Scholar 

  12. Feng Y, Xiong TR, Xu HB, Li CG, Hou HQ (2016) Mater Lett 182:59–62

    Article  Google Scholar 

  13. Burris DL, Sawyer WG (2006) Wear 261(3–4):410–418

    Article  Google Scholar 

  14. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Science 315(5817):1379

    Article  Google Scholar 

  15. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666–669

    Article  Google Scholar 

  16. Gomez-Navarro C, Burghard M, Kern K (2008) Nano Lett 8(7):2045–2049

    Article  Google Scholar 

  17. Novoselov KS, Morozov SV, Mohinddin TMG, Ponomarenko LA, Elias DC, Yang R, Barbolina II, Blake P, Booth TJ, Jiang D, Giesbers J, Hill EW, Geim AK (2007) Phys Status Solidi B Basic Solid State Phys 244(11):4106–4111

    Article  Google Scholar 

  18. Yu AP, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) J Phys Chem C 111(21):7565–7569

    Article  Google Scholar 

  19. Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC, Yen MY, Chiou KC, Lee TM (2011) Carbon 49(15):5107–5116

    Article  Google Scholar 

  20. Suh J, Bae D (2016) Compos Part B Eng 95:317–323

    Article  Google Scholar 

  21. Jiang H, Chen L, Chai SG, Yao XL, Chen F, Fu Q (2014) Compos Sci Technol 103:28–35

    Article  Google Scholar 

  22. Wang CY, Xiao P, Zhao JZ, Zhao X, Liu YH, Wang ZC (2006) Powder Technol 170(1):31–35

    Article  Google Scholar 

  23. Yuan WH, Gu YJ, Li L (2012) Appl Surf Sci 261:753–758

    Article  Google Scholar 

  24. Jensen RE, McKnight SH (2006) Compos Sci Technol 66(3–4):509–521

    Article  Google Scholar 

  25. Dey M, Deitzel JM, Gillespie JW, Schweiger S (2014) Compos Part A Appl Sci Manuf 63:59–67

    Article  Google Scholar 

  26. Du NUL, Abu Bakar A, Azahari B, Ariff ZM, Chujo Y (2012) Polym Test 31(7):931–937

    Article  Google Scholar 

  27. Song YZ, Yu JH, Yu LH, Alam FE, Dai W, Li CY, Jiang N (2015) Mater Des 88:950–957

    Article  Google Scholar 

  28. Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Adv Mater 25(5):732–737

    Article  Google Scholar 

  29. Tzounis L, Debnath S, Rooj S, Fischer D, Mader E, Das A, Stamm M, Heinrich G (2014) Mater Des 58:1–11

    Article  Google Scholar 

  30. Yang ZJ, Liu J, Liao RJ, Yang GW, Wu XH, Tang ZH, Guo BC, Zhang LQ, Ma Y, Nie QH, Wang F (2016) Compos Sci Technol 132:68–75

    Article  Google Scholar 

  31. Kim IT, Lee JH, Shofner ML, Jacob K, Tannenbaum R (2012) Polymer 53(12):2402–2411

    Article  Google Scholar 

  32. Hunke H, Soin N, Shah TH, Kramer E, Pascual A, Karuna MSL, Siores E (2015) Materials 8(5):2258–2275

    Article  Google Scholar 

  33. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W (2005) IEEE Trans Dielectr Electr Insul 12(4):629–643

    Article  Google Scholar 

  34. Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Compos Sci Technol 67(11–12):2528–2534

    Article  Google Scholar 

  35. Chen BQ, Evans JRG (2006) Macromolecules 39(2):747–754

    Article  Google Scholar 

  36. Zheng W, Wong SC (2003) Compos Sci Technol 63(2):225–235

    Article  Google Scholar 

  37. Du JH, Zhao L, Zeng Y, Zhang LL, Li F, Liu PF, Liu C (2011) Carbon 49(4):1094–1100

    Article  Google Scholar 

  38. Deepa KS, Nisha S, Parameswaran P, Sebastian MT, James J (2009) Appl Phys Lett 94(14):142902

    Article  Google Scholar 

  39. Shen XJ, Pei XQ, Fu SY, Friedrich K (2013) Polymer 54(3):1234–1242

    Article  Google Scholar 

  40. Sebastian R, Noll A, Zhang G, Burkhart T, Wetzel B (2013) Tribol Int 64:187–195

    Article  Google Scholar 

  41. Aderikha VN, Shapovalov VA (2010) Wear 268(11–12):1455–1464

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by a grant from the College and University Key Project of Jiangsu Province (No. 14KJA430006), Prospective United Innovation Project of Jiangsu Province (No. SBY2014020171), Guangdong Province Science & Technology Program (No. 2017A010103015), and Science and Technology Cooperation Funds of Yangzhou City and Yangzhou University (YZ2016250).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiping Zhu or Chaoqun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Peng, B., Zhu, A. et al. Eco-friendly synthesis of graphene nanoplatelets via a carbonation route and its reinforcement for polytetrafluoroethylene composites. J Mater Sci 53, 626–636 (2018). https://doi.org/10.1007/s10853-017-1526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1526-3

Keywords

Navigation