Skip to main content
Log in

Morphology of the basal lamellar crystal and overgrown lamellae of poly (ε-caprolactone) / poly (vinyl methyl ether) blends isothermally crystallized at high temperatures

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The morphology of the basal and overgrown lamellar crystals of PCL/PVME blends in ultrathin films are studied in detail. The blends were prepared from dilute solution with 60/40 composition ratios onto Si-substrate using the spin-coating method, melted above the equilibrium melt temperature, and subsequently crystallized at high temperatures. A truncated lozenge-shaped morphology of the crystals with stacks of lamellae layers (basal and overgrown lamellae) are observed by real-time atomic force microscopy. Depending on the crystallization conditions, the overgrown lamellae are found on-center and/or off-center on the basal lamellar crystal, correlated with the primary- or self-induced nucleation processes. During the crystallization process, the growth rate in the longitudinal direction is found double to the lateral direction. Electron diffraction (ED) pattern reveals these lamellae have very high crystallographic order; a characteristic similar to the single crystals. The overgrown lamellae have similar characteristics to the main basal lamellar crystal. Real-time AFM observation assisted with electron diffraction patterns shows a clear correlation the morphology and the nucleation process of the basal lamellar crystal and the overgrown lamellae of the blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fenni SE, Cavallo D, Müller AJ (2019) Nucleation and Crystallization in Bio-Based Immiscible Polyester Blends. In: Di Lorenzo ML, Androsch R (eds) Thermal Properties of Bio-based Polymers. Springer International Publishing, Cham, 219–256

    Chapter  Google Scholar 

  2. Mamun A, Bazuin CG, Prud’homme RE (2015) Morphologies of Various Polycaprolactone/Polymer Blends in Ultrathin Films. Macromolecules 48(5):1412–7. https://doi.org/10.1021/ma502188t.

  3. Nunez E, Vansco GJ, Gedde UW (2008) Morphology, crystallization and melting of single crystals and thin films of star–branched polyesters with poly(epsilon-caprolactone) arms as revealed by atomic force microscopy. J Macromol Sci Phys 47(3):589–607. https://doi.org/10.1080/00222340801955636

    Article  CAS  Google Scholar 

  4. Mareau VH, Prud’homme RE (2005) In-situ hot stage atomic force microscopy study of poly (ε-caprolactone) crystal growth in ultrathin films. Macromolecules 38(2):398–408

    Article  CAS  Google Scholar 

  5. Brûlet A, Boué F, Menelle A, Cotton JP (2000) Conformation of Polystyrene Chain in Ultrathin Films Obtained by Spin Coating. Macromolecules 33. https://doi.org/10.1021/ma9906783.

  6. Itagaki H, Nishimura Y, Sagisaka E, Grohens Y (2006) Entanglement of Polymer Chains in Ultrathin Films. Langmuir 22(2):742–748. https://doi.org/10.1021/la051432w

    Article  PubMed  CAS  Google Scholar 

  7. Sharifzadeh E (2019) Modeling of the Tensile Strength of Immiscible Binary Polymer Blends Considering the Effects of Polymer/Polymer Interface and Morphological Variation. Chin J Polym Sci 37(11):1176–1182. https://doi.org/10.1007/s10118-019-2274-4

    Article  CAS  Google Scholar 

  8. Dastan D, Banpurkar A (2017) Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. J Mater Sci: Mater Electron 28(4):3851–3859. https://doi.org/10.1007/s10854-016-5997-9

    Article  CAS  Google Scholar 

  9. Dastan D, Gosavi SW, Chaure NB (2015) Studies on Electrical Properties of Hybrid Polymeric Gate Dielectrics for Field Effect Transistors. Macromol Symp 347(1):81–86. https://doi.org/10.1002/masy.201400042

    Article  CAS  Google Scholar 

  10. Mamun A (2020) Advance application of Raman spectroscopy for quantitative analysis of noncrystalline components in thin films of poly(ε-caprolactone)/poly(butadiene) blends. Polym Eng Sci 60(11):2702–2709. https://doi.org/10.1002/pen.25501

    Article  CAS  Google Scholar 

  11. Mamun A (2020) Effect of acrylonitrile content of SAN on the bending morphology and its quantitative variation inside crystals of PCL/SAN blends confined in thin films. J Polym Sci 58(23):3283–3293. https://doi.org/10.1002/pol.20200548

    Article  CAS  Google Scholar 

  12. Mamun A, Mahmood R (2020) Comonomer Effect on the Thermal, Morphological and Mechanical Properties of Poly(ethylene-co-octene)/Poly(ethylene-co-vinyl acetate) Blends. Polym Sci, Ser A 62(6):660–669. https://doi.org/10.1134/S0965545X20060073

    Article  Google Scholar 

  13. Mamun A, Mareau VH, Chen J, Prud’homme RE (2014) Morphologies of miscible PCL/PVC blends confined in ultrathin films. Polymer 55(9):2179–2187. https://doi.org/10.1016/j.polymer.2014.03.010

    Article  CAS  Google Scholar 

  14. Mamun A, Rahman SMM, Roland S, Mahmood R (2018) Impact of Molecular Weight on the Thermal Stability and the Miscibility of Poly(ε-caprolactone)/Polystyrene Binary Blends. J Polym Environ 26(8):3511–3519. https://doi.org/10.1007/s10924-018-1236-1

    Article  CAS  Google Scholar 

  15. Campoy-Quiles M, Sims M, Etchegoin PG, Bradley DDC (2006) Thickness-Dependent Thermal Transition Temperatures in Thin Conjugated Polymer Films. Macromolecules 39(22):7673–7680. https://doi.org/10.1021/ma0605752

    Article  CAS  Google Scholar 

  16. Schönherr H, Frank CW (2003) Ultrathin Films of Poly(ethylene oxides) on Oxidized Silicon. 1. Spectroscopic Characterization of Film Structure and Crystallization Kinetics. Macromolecules 36(4):1188–98. https://doi.org/10.1021/ma020685i.

  17. Mareau VH, Prud’homme RE (2005) In-Situ Hot Stage Atomic Force Microscopy Study of Poly(caprolactone) Crystal Growth in Ultrathin Films. Macromolecules 38(2):398–408. https://doi.org/10.1021/ma0482359

    Article  CAS  Google Scholar 

  18. Mamun A (2021) Detailed thermal analysis of crystallization kinetics and band morphology for future blending of absorbable poly(p-dioxanone) monofilament surgical suture with poly(ε-caprolactone). Polym Int 70(5):648–655. https://doi.org/10.1002/pi.6150

    Article  CAS  Google Scholar 

  19. Mamun A, Umemoto S, Okui N, Ishihara N (2007) Self-Seeding Effect on Primary Nucleation of Isotactic Polystyrene. Macromolecules 40(17):6296–6303. https://doi.org/10.1021/ma070963j

    Article  CAS  Google Scholar 

  20. Reneker DH, Geil PH (1960) Morphology of Polymer Single Crystals. J Appl Phys 31(11):1916–1925. https://doi.org/10.1063/1.1735474

    Article  CAS  Google Scholar 

  21. Majumder S, Poudel P, Zhang H, Xu J, Reiter G (2020) A nucleation mechanism leading to stacking of lamellar crystals in polymer thin films. Polym Int 69(11):1058–1065. https://doi.org/10.1002/pi.5905

    Article  CAS  Google Scholar 

  22. Reiter G, Sommer JU (2000) Polymer crystallization in quasi-two dimensions. I. Experimental results. J Chem Phys 112(9):4376–83. https://doi.org/10.1063/1.480984.

  23. Hong S, MacKnight WJ, Russell TP, Gido SP (2001) Orientationally Registered Crystals in Thin Film Crystalline/Amorphous Block Copolymers. Macromolecules 34(8):2398–2399. https://doi.org/10.1021/ma002167i

    Article  CAS  Google Scholar 

  24. Toda A, Keller A (1993) Growth of polyethylene single crystals from the melt: Morphology. Colloid Polym Sci 271(4):328–342. https://doi.org/10.1007/BF00657415

    Article  CAS  Google Scholar 

  25. Casas MT, Puiggalí J, Raquez J-M, Dubois P, Córdova ME, Müller AJ (2011) Single crystals morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Polymer 52(22):5166–5177. https://doi.org/10.1016/j.polymer.2011.08.057

    Article  CAS  Google Scholar 

  26. Weber CHM, Chiche A, Krausch G, Rosenfeldt S, Ballauff M, Harnau L et al (2007) Single Lamella Nanoparticles of Polyethylene. Nano Lett 7(7):2024–2029. https://doi.org/10.1021/nl070859f

    Article  PubMed  CAS  Google Scholar 

  27. Bernal-Lara TE, Liu RYF, Hiltner A, Baer E (2005) Structure and thermal stability of polyethylene nanolayers. Polymer 46(9):3043–3055. https://doi.org/10.1016/j.polymer.2005.01.055

    Article  CAS  Google Scholar 

  28. Jin Y, Hiltner A, Baer E, Masirek R, Piorkowska E, Galeski A (2006) Formation and transformation of smectic polypropylene nanodroplets. J Polym Sci, Part B: Polym Phys 44(13):1795–1803. https://doi.org/10.1002/polb.20839

    Article  CAS  Google Scholar 

  29. Jin Y, Hiltner A, Baer E (2007) Fractionated crystallization of polypropylene droplets produced by nanolayer breakup. J Polym Sci, Part B: Polym Phys 45(10):1138–1151. https://doi.org/10.1002/polb.21146

    Article  CAS  Google Scholar 

  30. Mackey M, Flandin L, Hiltner A, Baer E (2011) Confined crystallization of PVDF and a PVDF-TFE copolymer in nanolayered films. J Polym Sci, Part B: Polym Phys 49(24):1750–1761. https://doi.org/10.1002/polb.22375

    Article  CAS  Google Scholar 

  31. Michell RM, Müller AJ (2016) Confined crystallization of polymeric materials. Prog Polym Sci 54–55:183–213. https://doi.org/10.1016/j.progpolymsci.2015.10.007

    Article  CAS  Google Scholar 

  32. Keith HD, Padden FJ (1984) Twisting orientation and the role of transient states in polymer crystallization. Polymer 25(1):28–42. https://doi.org/10.1016/0032-3861(84)90264-7

    Article  CAS  Google Scholar 

  33. Flory PJ (1962) On the Morphology of the Crystalline State in Polymers. J Am Chem Soc 84(15):2857–2867. https://doi.org/10.1021/ja00874a004

    Article  CAS  Google Scholar 

  34. Taguchi K, Miyaji H, Izumi K, Hoshino A, Miyamoto Y, Kokawa R (2001) Growth shape of isotactic polystyrene crystals in thin films. Polymer 42(17):7443–7447. https://doi.org/10.1016/S0032-3861(01)00215-4

    Article  CAS  Google Scholar 

  35. Zhou X, Thompson GE (2017) Electron and Photon Based Spatially Resolved Techniques. Ref Module Mater Sci Mater Eng. Elsevier

Download references

Acknowledgements

The author would like to thank Professor Peter Grutter, Department of Physics, McGill University, Canada for the experimental facilities. The author is also grateful to the Deanship of Scientific Research, University of Hafr Al Batin, Saudi Arabia for their gracious permission for experimental facilities. The author also thanks Professor Rizwan Mahmood, Department of Physics and Engineering, Slippery Rock University, USA for his occasional help throughout the progress of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al Mamun.

Ethics declarations

Conflicts of interest

The author declare that there is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31350 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamun, A. Morphology of the basal lamellar crystal and overgrown lamellae of poly (ε-caprolactone) / poly (vinyl methyl ether) blends isothermally crystallized at high temperatures. J Polym Res 29, 52 (2022). https://doi.org/10.1007/s10965-022-02915-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02915-9

Keywords

Navigation