Skip to main content
Log in

The effect of ultrasonic irradiation power and initial concentration on the particle size of nano copper(II) coordination polymer: Precursors for preparation of CuO nanostructures

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The general objective of this research was to study the effect of initial concentration of reactants and ultrasonic irradiation power impacts on the nanostructure of copper (II) coordination polymer of {[Cu3(L)(NO3)2(DMF)(H2O)].3(DMF)}n (1) [H4L = N2,N6-bis[(E)-(2-hydroxyphenyl)imino)methyl)pyridine-2,6-dicarboxamide]. Different characterization methods utilized to determine the nanoparticles of compound 1 and thermal gravimetric (TGA) and differential thermal analyses (DTA) give us thermal stability of the nanoparticles. Reducing the concentration of initial reactants together with the increasing power of ultrasound irradiation can lead to obtaining nanoparticles of compound 1 with uniformed morphology and small particle size. Bandgap energy calculation revealed that as particles size decreases, nanoparticles of compound 1 shift to the blue light wavelengths. Thermal decomposition of the nanoparticles of compound 1 at 400 ºC under an air atmosphere led to the synthesis of phase-pure CuO nanoparticles that are characterized by scanning electron microscope (SEM) and X-ray powder diffraction (XRD) analyses. The CuO nanoparticles obtained in this research appear to be highly dispersed with a particle size of around 23 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shahverdizadeh GH (2015) J Polym Res 22:79–87

    Article  Google Scholar 

  2. Yang R, Bieh Y, Chen CH, Hsu C, Kato Y, Yamamoto H, Tsung C, Wu KC-W (2021) ACS Sustainable Chem Eng 9:6541–6550

    Article  CAS  Google Scholar 

  3. Ramezani B, Shahverdizadeh GH, Edjlali L, Ramezani F, Babazadeh M (2020) ChemistrySelect 5:13081–13090

    Article  CAS  Google Scholar 

  4. Li S-F, Guo H, Huang Y, Li C-M, Liu Y, Han J (2020) J Polym Res 27:1–11

    Article  CAS  Google Scholar 

  5. Chi H-B, Fang Y, Meng Y, Liu H, Liu M (2021) J Polym Res 28:245

    Article  CAS  Google Scholar 

  6. Xie H-Q, Li Y-B, Tian Q-C, Fan Q-L (2021) J Polym Res 28:208

    Article  CAS  Google Scholar 

  7. Y.-C. Liu, L.-H. Yeh, M.-J. Zheng, C.W. Wu Kevin, (2021) Sci Adv 7:eabe9924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Liaoa Y, Chia NV, Ishiguro N, Young AP, Tsung C, Wu KC-W (2020) Appl Catal B Environmental 270:118805

    Article  Google Scholar 

  9. Wang K, Tang H, Zhou Q, Wang Z, Ma Y, Wang Y (2019) Inorg Chem Commun 104:129–133

    Article  CAS  Google Scholar 

  10. Miao Z, Luan Y, Qi C, Ramella D (2016) Dalton Trans 45:13917–13924

    Article  PubMed  CAS  Google Scholar 

  11. Konnerth H, Matsagar BM, Chen SS, Prechtl MHG, Shieh F, Wu KC-W (2020) Coord Chem Rev 416:213319

    Article  CAS  Google Scholar 

  12. Chueh C-C, Chen C-I, Su Y-A, Konnerth H, Gu Y-J, Kung C-W, Wu KC-W (2019) J Mater Chem A 7:17079–17095

    Article  CAS  Google Scholar 

  13. Ghavidelaghdam E, Shahverdizadeh GH, Motameni Tabatabai J, Mirtamizdoust B (2018) Ultras. Sonochem 42:155–161

    Article  CAS  Google Scholar 

  14. Shahverdizadeh GH, Hakimi F, Mirtamizdoust B, Soudi A, Hojati-Talemi PJ (2012) Inorgan. Organomet Polym Mat 22:903–909

    Article  CAS  Google Scholar 

  15. Shahverdizadeh GH, Morsali A, Inorgan J (2011) Organomet. Polym Mat 21:694–699

    CAS  Google Scholar 

  16. Zhu J, Bi H, Wang Y, Wang X, Yang X, Lu L (2007) Mater Lett 61:5236–5238

    Article  CAS  Google Scholar 

  17. Carlo LD, Conte DE, Kemnitz E, Pinna N (2014) Chem Commun 50:460–462

    Article  Google Scholar 

  18. Chen JT, Zhang F, Wang J, Zhang GA, Miao BB, Fan XY, Yan D, Yan PX (2008) J Alloy Compd 454:268–273

    Article  CAS  Google Scholar 

  19. Yu L, Zhang G, Wu Y, Bai X, Guo D (2008) J Cryst Growth 310:3125–3130

    Article  CAS  Google Scholar 

  20. Yuan G-Q, Jiang H-F, Lin C, Liao S-J (2007) J Cryst Growth 303:400–406

    Article  CAS  Google Scholar 

  21. Avgouropoulos G, Ioannides T, Papadopoulou C, Batista J, Hocevar S, Matralis HK (2002) Catal Today 75:157–167

    Article  CAS  Google Scholar 

  22. Hugh MacDonald A (2001) Nature 414:409–410

    Article  Google Scholar 

  23. Eskes H, Tjeng LH, Sawatzky GA (1990) Phys Rev B 41:288–299

    Article  CAS  Google Scholar 

  24. Borzi RA, Stewart SJ, Mercader RC, Punte G, Garcia F (2001) J Magn Magn Mater 230:1513–1515

    Article  Google Scholar 

  25. Zhang X, Wang G, Liu X, Wu H (2008) Mater Chem Phys 112:726–729

    Article  CAS  Google Scholar 

  26. Dinari M, Mokhtari N, Hatami M (2021) J Polym Res 28:119

    Article  CAS  Google Scholar 

  27. Aghaei M, Kianfar AH, Dinari M (2020) J Polym Res 27:54

    Article  CAS  Google Scholar 

  28. Fan Y-H, Wang J-L, Bai Y, Dang D-B, Zhao Y-Q (2012) Synth Met 162:1126–1132

    Article  CAS  Google Scholar 

  29. Prakash S, Raj JA, Muthuraja P, Kalaignan GP, Manisankar P (2019) Mater Lett 247:48–51

    Article  CAS  Google Scholar 

  30. Akhbari K, Morsali A, Retailleau P (2013) Ultrason Sonochem 20:1428–1435

    Article  PubMed  CAS  Google Scholar 

  31. Bang JH, Suslick KS (2007) J Am Chem Soc 129:2242–2243

    Article  PubMed  CAS  Google Scholar 

  32. Vaiana L, Regueiro-Figueroa M, Mato-Iglesias M, Platas-Iglesias C, Esteban-Gómez D, de Blas A, Rodríguez-Blas T (2007) Inorg Chem 46:8271–8282

    Article  PubMed  CAS  Google Scholar 

  33. Teo BM, Chen F, Hatton TA, Grieser F, Ashokkumar M (2009) Langmuir 25:2593–2595

    Article  PubMed  CAS  Google Scholar 

  34. Pan Y, Mei Z, Yang Z, Zhang W, Pei B, Yao H (2014) Chem Eng J 242:397–403

    Article  CAS  Google Scholar 

  35. Sadeghzadeh H, Morsali A (2011) Ultrason Sonochem 18:80–84

    Article  PubMed  CAS  Google Scholar 

  36. Shen Q, Min Q, Shi J, Jiang L, Hou W, Zhu J-J (2011) Ultrason Sonochem 18:231–237

    Article  PubMed  CAS  Google Scholar 

  37. Ashassi-Sorkhabi H, Bagheri R (2014) Synth Met 195:1–8

    Article  CAS  Google Scholar 

  38. Bigdeli F, Ghasempour H, Azhdari Tehrani A, Morsali A, Hosseini-Monfared H (2017) Ultrason. Sonochem 37:29–36

    Article  CAS  Google Scholar 

  39. Hanifehpour Y, Safarifard V, Morsali A, Mirtamizdoust B, Joo SW (2015) Ultrason Sonochem 23:282–288

    Article  PubMed  CAS  Google Scholar 

  40. Rüdiger S, Kemnitz E (2008) Dalton Trans 1117–1127

  41. Nandiyanto ABD, He X, Wang W-N (2019) Cryst Eng Comm 21:2268–2272

    Article  CAS  Google Scholar 

  42. Iqbal W, Tian B, Anpo M, Zhang J (2017) Res Chem Intermediat 43:5187–5201

    Article  CAS  Google Scholar 

  43. Hafeez HY, Lakhera SK, Karthik P, Anpo M, Neppolian B (2018) Appl Surf Sci 449:772–779

    Article  CAS  Google Scholar 

  44. Della Rocca J, Liu D, Lin W (2011) Acc Chem Res 44:957–968

    Article  PubMed  CAS  Google Scholar 

  45. Wu S, Wang Y-F, Liu W-L, Ren M-M, Kong F-G, Wang S-J, Wang X-Q, Zhao H, Bao J-M (2018) Inorg Chem Front 5:3067–3073

    Article  CAS  Google Scholar 

  46. Hayati P, Rezvani AR, Morsali A, Molina DR, Geravand S, Suarez-Garcia S, Villaecija MAM, García-Granda S, Mendoza-Meroño R, Retailleau P (2017) Ultrason Sonochem 37:382–393

    Article  PubMed  CAS  Google Scholar 

  47. Hayati P, Rezvani A, Morsali A, Retailleau P, Centore R (2017) Ultrason Sonochem 35:81–91

    Article  PubMed  CAS  Google Scholar 

  48. Hussain N, Bhardwaj VK (2016) Dalton Trans 45:7697–7707

    Article  PubMed  CAS  Google Scholar 

  49. Nakamoto K (2006) Handbook of Vibrational Spectroscopy, Marquette University, Milwaukee, WI, USA.

  50. Husain S, Alkhtaby LA, Giorgetti E, Zoppi A, Muniz Miranda M (2014) J Lumin 145:132–137

    Article  CAS  Google Scholar 

  51. Hamam KJ, Alomari MI (2017) Appl Nanosci 7:261–268

    Article  CAS  Google Scholar 

  52. Tadjarodi A, Akhavan O, Bijanzad K (2015) Trans Nonferrous Met Soc China 25:3634-3642.

  53. Mohamed RM, Harraz FA, Shawky A (2014) Ceram int 40:2127–2133

    Article  CAS  Google Scholar 

  54. Chang S-S, Lee H-J, Park HJ (2005) Ceram int 31:411–415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Islamic Azad University Tabriz Branch for providing their laboratories to fulfill this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Shahverdizadeh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest for the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadatian, M.H., Shahverdizadeh, G.H., Babazadeh, M. et al. The effect of ultrasonic irradiation power and initial concentration on the particle size of nano copper(II) coordination polymer: Precursors for preparation of CuO nanostructures. J Polym Res 29, 57 (2022). https://doi.org/10.1007/s10965-022-02913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02913-x

Keywords

Navigation