Skip to main content
Log in

Nafion reinforced with polyacrylonitrile nanofibers/zirconium-graphene oxide composite membrane for direct methanol fuel cell application

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Electrospun polyacrylonitrile (PAN) nanofibers decorated with ZrO2 then blended with graphene oxide nanofibers were used to enhance the fuel cell performance and the conductivity of Nafion® membrane. The modified membranes and the commercial membrane were synthesized by recast method. Nanocomposite’s membranes had higher proton conductivity and overall membrane properties increased, and fuel cell efficiency than commercial Nafion® and similar work published in the literature®. The Nafion®-PAN/ZrO2-GO nanofiber membrane had a lower methanol permeability and a proton conductivity of 5.46 × 10–8 cm2/s and 0.46 mS/cm, respectively, with a fuel cell performance of 75.9 mWcm−2 at a current density of 250 mAcm−2. The composite membrane used in this study has potential for use in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haynes C (2001) Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines. J Power Sources 92:199–203

    Article  CAS  Google Scholar 

  2. Hogarth WH, Da Costa JD, Lu GM (2005) Solid acid membranes for high temperature (140° C) proton exchange membrane fuel cells. J Power Sources 142:223–237

    Article  CAS  Google Scholar 

  3. Farooque M, Maru HC (2001) Fuel cells-the clean and efficient power generators. Proc IEEE 89:1819–1829

    Article  CAS  Google Scholar 

  4. Scott K, Taama W, Argyropoulos P (1999) Engineering aspects of the direct methanol fuel cell system. J Power Sources 79:43–59

    Article  CAS  Google Scholar 

  5. Zheng J, Bi W, Dong X, Zhu J, Mao H, Li S, Zhang S (2016) High performance tetra-sulfonated poly (p-phenylene-co-aryl ether ketone) membranes with microblock moieties for passive direct methanol fuel cells. J Membr Sci 517:47–56

    Article  CAS  Google Scholar 

  6. Scott K, Taama W, Cruickshank J (1998) Performance of a direct methanol fuel cell. J Appl Electrochem 28:289–297

    Article  CAS  Google Scholar 

  7. Lufrano F, Baglio V, Staiti P, Antonucci V (2013) Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 243:519–534

    Article  CAS  Google Scholar 

  8. Sumner J, Creager S, Ma J, DesMarteau D (1998) Proton conductivity in Nafion® 117 and in a novel bis [(perfluoroalkyl) sulfonyl] imide ionomer membrane. J Electrochem Soc 145:107–110

    Article  CAS  Google Scholar 

  9. St-Pierre J, Wilkinson DP (2001) Fuel cells: a new, efficient and cleaner power source. AIChE J 47:1482–1486

    Article  CAS  Google Scholar 

  10. Slade S, Campbell S, Ralph T, Walsh F (2002) Ionic conductivity of an extruded Nafion 1100 EW series of membranes. J Electrochem Soc 149:A1556–A1564

    Article  CAS  Google Scholar 

  11. Li Q, He R, Jensen JO, Bjerrum NJ (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 C. Chem Mater 15:4896–4915

    Article  CAS  Google Scholar 

  12. Gómez-Romero P, Asensio JA, Borrós S (2005) Hybrid proton-conducting membranes for polymer electrolyte fuel cells: phosphomolybdic acid doped poly (2, 5-benzimidazole) (ABPBI-H3PMo12O40). Electrochim Acta 50:4715–4720

    Article  Google Scholar 

  13. Silva V, Schirmer J, Reissner R, Ruffmann B, Silva H, Mendes A, Madeira L, Nunes S (2005) Proton electrolyte membrane properties and direct methanol fuel cell performance: II. Fuel cell performance and membrane properties effects. J Power Sources 140:41–49

    Article  CAS  Google Scholar 

  14. Navarra M, Abbati C, Scrosati B (2008) Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. J Power Sources 183:109–113

    Article  CAS  Google Scholar 

  15. Subramania A, Sundaram NK, Kumar GV, Vasudevan T (2006) New polymer electrolyte based on (PVA–PAN) blend for Li-ion battery applications. Ionics 12:175–178

    Article  CAS  Google Scholar 

  16. Enotiadis A, Angjeli K, Baldino N, Nicotera I, Gournis D (2012) Graphene-based nafion nanocomposite membranes: enhanced proton transport and water retention by novel organo-functionalized graphene oxide nanosheets. Small 8:3338–3349

    Article  CAS  PubMed  Google Scholar 

  17. Che Q, Li Z, Pan B, Duan X, Jia T, Liu L (2019) Fabrication of layered membrane electrolytes with spin coating technique as anhydrous proton exchange membranes. J Colloid Interface Sci 555:722–730

    Article  CAS  PubMed  Google Scholar 

  18. Nataraj S, Yang K, Aminabhavi T (2012) Polyacrylonitrile-based nanofibers—A state-of-the-art review. Prog Polym Sci 37:487–513

    Article  CAS  Google Scholar 

  19. Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang C-G, Lee K-P (2008) Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325:683–690

    Article  CAS  Google Scholar 

  20. Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22:12953–12971

    Article  CAS  Google Scholar 

  21. Kim C, Choi Y-O, Lee W-J, Yang K-S (2004) Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly (amic acid) solutions. Electrochim Acta 50:883–887

    Article  CAS  Google Scholar 

  22. Nie G, Li Z, Lu X, Lei J, Zhang C, Wang C (2013) Fabrication of polyacrylonitrile/CuS composite nanofibers and their recycled application in catalysis for dye degradation. Appl Surf Sci 284:595–600

    Article  CAS  Google Scholar 

  23. Yun KM, Suryamas AB, Iskandar F, Bao L, Niinuma H, Okuyama K (2010) Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Sep Purif Technol 75:340–345

    Article  CAS  Google Scholar 

  24. Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker DH, Fong H (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50:2999–3006

    Article  CAS  Google Scholar 

  25. Liu L, Li Z, Che Q (2019) Multilayered Membrane Electrolytes Based on Aramid Nanofibers for High-Temperature Proton Exchange Membrane Fuel Cells. ACS Appl Nano Mater 2:2160–2168

    Article  CAS  Google Scholar 

  26. Neghlani PK, Rafizadeh M, Taromi FA (2011) Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: comparison with micjrofibers. J Hazard Mater 186:182–189

    Article  CAS  PubMed  Google Scholar 

  27. Saeed KH, Park SY, Ali N (2009) Characterization of poly (butylene terephthalate) electrspun nanofibres containing titanium oxide

  28. Takenaka S, Uwai S, Ida S, Matsune H, Kishida M (2013) Bottom-up synthesis of titania and zirconia nanosheets and their composites with graphene. Chem Lett 42:1188–1190

    Article  CAS  Google Scholar 

  29. Ren PG, Yan DX, Ji X, Chen T, Li ZM (2010) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22:055705

  30. Jia T, Shen S, Xiao L, Jin J, Zhao J, Che Q (2020) Constructing multilayered membranes with layer-by-layer self-assembly technique based on graphene oxide for anhydrous proton exchange membranes. Eur Polym J 122:109362

  31. Pilehrood MK, Heikkilä P, Harlin A (2012) Preparation of carbon nanotube embedded in polyacrylonitrile (pan) nanofibre composites by electrospinning process. AUTEX Res J 12:1–6

    Article  Google Scholar 

  32. Wu L, Zhou G, Liu X, Zhang Z, Li C, Xu T (2011) Environmentally friendly synthesis of alkaline anion exchange membrane for fuel cells via a solvent-free strategy. J Membr Sci 371:155–162

    Article  CAS  Google Scholar 

  33. Zhang W-X, Wang Y-Z, Sun C-F (2007) Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. J Polym Res 14:467–474

    Article  CAS  Google Scholar 

  34. Harmer MA, Farneth WE, Sun Q (1996) High surface area nafion resin/silica nanocomposites: a new class of solid acid catalyst. J Am Chem Soc 118:7708–7715

    Article  CAS  Google Scholar 

  35. Hao Y, Li J, Yang X, Wang X, Lu L (2004) Preparation of ZrO2–Al2O3 composite membranes by sol–gel process and their characterization. Mater Sci Eng A 367:243–247

    Article  Google Scholar 

  36. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. John Wiley & Sons

  37. Chien HC, Tsai LD, Huang CP, Kang CY, Lin JN, Chang FC (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801

  38. Starkweather HW Jr (1982) Crystallinity in perfluorosulfonic acid ionomers and related polymers. Macromolecules 15:320–323

    Article  CAS  Google Scholar 

  39. Mathur R, Bahl O, Mittal J, Nagpal K (1991) Structure of thermally stabilized PAN fibers. Carbon 29:1059–1061

    Article  Google Scholar 

  40. Gu H, Huang Y, Zuo L, Fan W, Liu T (2016) Graphene sheets wrapped carbon nanofibers as a highly conductive three-dimensional framework for perpendicularly anchoring of MoS2: Advanced electrocatalysts for hydrogen evolution reaction. Electrochim Acta 219:604–613

    Article  CAS  Google Scholar 

  41. Kyu T, Hashiyama M, Eisenberg A (1983) Dynamic mechanical studies of partially ionized and neutralized Nafion polymers. Can J Chem 61:680–687

    Article  CAS  Google Scholar 

  42. Xiao S, Lv H, Tong Y, Xu L, Chen B (2011) Thermal behavior and kinetics during the stabilization of polyacrylonitrile precursor in inert gas. J Appl Polym Sci 122:480–488

    Article  CAS  Google Scholar 

  43. Chen J, Asano M, Yamaki T, Yoshida M (2006) Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films. J Membr Sci 269:194–204

    Article  CAS  Google Scholar 

  44. Chen J, Guo Q, Li D, Tong J, Li X (2012) Properties improvement of SPEEK based proton exchange membranes by doping of ionic liquids and Y2O3. Progress in Natural Science: Materials International 22:26–30

    Article  Google Scholar 

  45. Lim JW, Lee J-M, Yun S-M, Park B-J, Lee Y-S (2009) Hydrophilic modification of polyacrylonitrile membranes by oxyfluorination. J Ind Eng Chem 15:876–882

    Article  CAS  Google Scholar 

  46. Wang LS, Lai AN, Lin CX, Zhang QG, Zhu AM, Liu QL (2015) Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells. J Membr Sci 492:58–66

    Article  Google Scholar 

  47. Yuan J, Zhou G, Pu H (2008) Preparation and properties of Nafion®/hollow silica spheres composite membranes. J Membr Sci 325:742–748

    Article  CAS  Google Scholar 

  48. Gosalawit R, Chirachanchai S, Manuspiya H, Traversa E (2006) Krytox-Silica–Nafion® composite membrane: A hybrid system for maintaining proton conductivity in a wide range of operating temperatures. Catal Today 118:259–265

    Article  CAS  Google Scholar 

  49. Savadogo O (1998) Emerging membrane for electrochemical systems:(I) solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1:47–66

    CAS  Google Scholar 

  50. Chen T-Y, Leddy J (2000) Ion exchange capacity of Nafion and Nafion composites. Langmuir 16:2866–2871

    Article  CAS  Google Scholar 

  51. Arico A, Baglio V, Di Blasi A, Creti P, Antonucci P, Antonucci V (2003) Influence of the acid–base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ion 161:251–265

    Article  CAS  Google Scholar 

  52. Hudiono Y, Choi S, Shu S, Koros WJ, Tsapatsis M, Nair S (2009) Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications. Microporous Mesoporous Mater 118:427–434

    Article  CAS  Google Scholar 

  53. Carter R, Wycisk R, Yoo H, Pintauro P (2002) Blended polyphosphazene/polyacrylonitrile membranes for direct methanol fuel cells. Electrochem Solid-State Lett 5:A195–A197

    Article  CAS  Google Scholar 

  54. Zarrin H, Higgins D, Jun Y, Chen Z, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781

    Article  CAS  Google Scholar 

  55. Sung KA, Oh K-H, Kim W-K, Choo M-J, Nam K-W, Park J-K (2011) Proton exchange membrane using imidazole-functionalized silica to enhance proton conductivity at lower humidity. Electrochem Solid-State Lett 14:B114–B116

    Article  CAS  Google Scholar 

  56. Devrim Y, Devrim H (2015) PEM fuel cell short stack performances of silica doped nanocomposite membranes. Int J Hydrogen Energy 40:7870–7878

    Article  CAS  Google Scholar 

  57. Li K, Ye G, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31

    Article  CAS  Google Scholar 

  58. Nicotera I, Simari C, Coppola L, Zygouri P, Gournis D, Brutti S, Minuto FD, Aricò A, Sebastian D, Baglio V (2014) Sulfonated graphene oxide platelets in Nafion nanocomposite membrane: advantages for application in direct methanol fuel cells. J Phys Chem C 118:24357–24368

    Article  CAS  Google Scholar 

  59. Cai Z, Li L, Su L, Zhang Y (2012) Supercritical carbon dioxide treated Nafion 212 commercial membranes for direct methanol fuel cells. Electrochem Commun 14:9–12

    Article  CAS  Google Scholar 

  60. Cao Y-C, Xu C, Wu X, Wang X, Xing L, Scott K (2011) A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources 196:8377–8382

    Article  CAS  Google Scholar 

  61. Paneri A, Heo Y, Ehlert G, Cottrill A, Sodano H, Pintauro P, Moghaddam S (2014) Proton selective ionic graphene-based membrane for high concentration direct methanol fuel cells. J Membr Sci 467:217–225

    Article  CAS  Google Scholar 

  62. Lin C, Lu Y (2013) Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells. J Power Sources 237:187–194

    Article  CAS  Google Scholar 

  63. Higa M, Hatemura K, Sugita M, Maesowa SI, Nishimura M, Endo N (2012) Performance of passive direct methanol fuel cell with poly(vinylalcohol)-based polymer electrolyte membranes. Int J Hydrog Energy 37:6292–6301

Download references

Acknowledgements

The authors would like to express their gratitude for the financial assistance they have received from the University of South Africa (AQIP), National Research Foundation (NRF), the Centre for Nanomaterials Science Research and the University of Johannesburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudzani Sigwadi.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigwadi, R., Mokrani, T. & Msomi, P.F. Nafion reinforced with polyacrylonitrile nanofibers/zirconium-graphene oxide composite membrane for direct methanol fuel cell application. J Polym Res 29, 18 (2022). https://doi.org/10.1007/s10965-021-02854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02854-x

Keywords

Navigation