Skip to main content
Log in

Effect of incorporating silica extracted from natural source in poly(3-hexylthiophene-2,5-diyl)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The great concern for environmental problems, as well as the need for polymeric materials with more versatile properties for their application, currently lead to a growing interest in the development of polymeric composites based on agro-industrial waste. In this work, novel composites of poly(3-hexylthiophene-2,5-diyl)/natural-silicon dioxide (P3HT/N-SiO2) were synthesized by extracting SiO2 from an agro-industrial waste (rice husk), they were characterized and applied to electrochromic devices (ECD). Composites were prepared by in-situ polymerization of 3HT monomer in the presence of N-SiO2. To evaluate the effect of the incorporation of N-SiO2 in P3HT on its physicochemical properties and its application in electrochromic devices, the N-SiO2 concentration was varied. The results revealed improved properties of P3HT with the addition of N-SiO2, such as higher crystallinity and decreased bandgap. Likewise, it was determined that the presence of N-SiO2 in P3HT increases the optical contrast in single ECD (glass/ITO/composite/polymeric electrolyte/ITO/glass architecture design) in a certain wavelength range. The procedure for obtaining P3HT/N-SiO2 composites is simple and inexpensive, which in addition to their interesting properties makes them potential candidates for their application in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Additional data and material to those reported in the experimental section can be shared upon request.

Code availability

Not applicable.

References

  1. Khatoon H, Ahmad S (2017) A review on conducting polymer reinforced polyurethane composites. J Ind Eng Chem 53:1–22. https://doi.org/10.1016/j.jiec.2017.03.036

    Article  CAS  Google Scholar 

  2. Zhao C, Jia X, Shu K, Yu C, Wallace GG, Wang C (2020) Conducting polymer composites for unconventional solid-state supercapacitors. J Mater Chem A 8:4677–4699. https://doi.org/10.1039/C9TA13432H

    Article  CAS  Google Scholar 

  3. Wang Y, Liu A, Han Y, Li T (2020) Sensors based on conductive polymers and their composites: a review. Polym Int 69:7–17. https://doi.org/10.1002/pi.5907

    Article  CAS  Google Scholar 

  4. Li X, Chen X, Jin Z, Li P, Xiao D (2021) Recent progress in conductive polymers for advanced fiber-shaped electrochemical energy storage devices. Mater Chem Front 5:1140–1163. https://doi.org/10.1039/D0QM00745E

    Article  CAS  Google Scholar 

  5. Kar P (2013) Doping in conjugated polymer, Wiley-Scrivener, New Jersey, USA

  6. Ma Z, Shi W, Yan K, Pan L, Yu G (2019) Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chem Sci 10:6232–6244. https://doi.org/10.1039/C9SC02033K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marrocchi A, Lanari D, Facchetti A, Vaccaro L (2012) Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energy Environ Sci 5:8457–8474. https://doi.org/10.1039/c2ee22129b

    Article  CAS  Google Scholar 

  8. Kleinschmidt AT, Root SE, Lipomi DJ (2017) Poly(3-hexylthiophene) (P3HT): Fruit fly or outlier in organic solar cell research? J Mater Chem A 5:11396–11400. https://doi.org/10.1039/c6ta08317j

    Article  CAS  Google Scholar 

  9. Nastase F, Stamatin I, Nastase C, Mihaiescu D, Moldovan A (2006) Synthesis and characterization of PAni-SiO and PTh-SiO2 nanocomposites’ thin films by plasma polymerization. Prog Solid State Chem 34:191–199. https://doi.org/10.1016/j.progsolidstchem.2005.11.022

    Article  CAS  Google Scholar 

  10. Kaur A, Kaur A, Saini D (2016) A Review on Synthesis of Silica Nanocomposites With Conducting Polymers: Polyaniline. Res Cell Int J Eng Sci 6913:40–53

    Google Scholar 

  11. Lee JS, Choi YJ, Park HH, Pyun JC (2011) Electrochromic Properties of Poly(3,4-ethylenedioxythiophene) Nanocomposite Film Containing SiO2 Nanoparticles. J Appl Polym Sci 122:3080–3085. https://doi.org/10.1002/app.34130

    Article  CAS  Google Scholar 

  12. Chen J, Zhu J, Wang N, Feng J, Yan W (2019) Hydrophilic polythiophene/SiO2 composite for adsorption engineering: green synthesis in aqueous medium and its synergistic and specific adsorption for heavy metals from wastewater. Chem Eng J 360:1486–1497. https://doi.org/10.1016/j.cej.2018.10.228

    Article  CAS  Google Scholar 

  13. Zhang S, Chen S, Hu F, Xu R, Yan B, Jiang M, Gu Y, Yanga F, Cao Y (2019) Spray-processable, large-area, patterned and all-solid-state electrochromic device based on silica/polyaniline nanocomposites. Sol Energy Mater Sol Cells 200:109951. https://doi.org/10.1016/j.solmat.2019

    Article  CAS  Google Scholar 

  14. Jung SG, Cho KY, Yim JH (2018) Porous PEDOT–SiO2 hybrid conductive micro particles prepared by simultaneous co-vaporized vapor phase polymerization. J Ind Eng Chem 63:95–102. https://doi.org/10.1016/j.jiec.2018.02.003

    Article  CAS  Google Scholar 

  15. Riedel B, Shen Y, Hauss J, Aichholz M, Tang X, Lemmer U, Gerken M (2011) Tailored highly transparent composite hole-injection layer consisting of pedot:PSS and SiO2 nanoparticles for efficient polymer light-emitting diodes. Adv Mater 23:740–745. https://doi.org/10.1002/adma.201003490

    Article  CAS  PubMed  Google Scholar 

  16. Riaz T, Kanwal F, Siddiqi SA, Gull N, Jamil T (2016) Study of Conducting Properties of Chemically Synthesized Polyaniline/crystalline Silica Composites. Int J Sci Eng Res 7:513–519

    Google Scholar 

  17. Roosz N, Euvard M, Lakard B, Buron CC, Martin N, Viau L (2017) Synthesis and characterization of polyaniline-silica composites: Raspberry vs core-shell structures. Where do we stand? J Colloid Interface Sci 502:184–192. https://doi.org/10.1016/j.jcis.2017.04.092

    Article  CAS  PubMed  Google Scholar 

  18. Song D, Li M, Li Y, Zhao X, Jiang B, Jiang Y (2014) Highly transparent and efficient counter electrode using SiO2/PEDOT-PSS composite for bifacial dye-sensitized solar cells. ACS Appl Mater Interfaces 6:7126–7132. https://doi.org/10.1021/am500082x

    Article  CAS  PubMed  Google Scholar 

  19. Richards JJ, Scherbarth AD, Wagner NJ, Butler PD (2016) Mixed Ionic/Electronic Conducting Surface Layers Adsorbed on Colloidal Silica for Flow Battery Applications. ACS Appl Mater Interaces 8:24089–24096. https://doi.org/10.1021/acsami.6b07372

    Article  CAS  Google Scholar 

  20. Ko YS, Yim JH (2016) Synergistic enhancement of electrical and mechanical properties of polypyrrole thin films by hybridization of SiO2 with vapor phase polymerization. Polymer 93:167–173. https://doi.org/10.1016/j.polymer.2016.04.030

    Article  CAS  Google Scholar 

  21. Yim JH (2013) Mechanically robust poly(3,4-ethylenedioxythiophene)–SiO2 hybrid conductive film prepared by simultaneous vapor phase polymerization. Compos Sci Techol 86:45–51. https://doi.org/10.1016/j.compscitech.2013.06.023

    Article  CAS  Google Scholar 

  22. Khadka R, Yim JH (2015) Influence of Base Inhibitor and Surfactant on the Electrical and Physicochemical Properties of PEDOT-SiO2 Hybrid Conductive Films. Macromol Res 23:559–565. https://doi.org/10.1007/s13233-015-3079-0

    Article  CAS  Google Scholar 

  23. Maeda S, Gill M, Amies SP, Fletcher IW (1995) Surface Characterization of Conducting Polymer-Silica Nanocomposites by X-ray Photoelectron Spectroscopy. Langmuir 11:1899–1904. https://doi.org/10.1021/la00006a014

    Article  CAS  Google Scholar 

  24. Uygun A, Yavuz AG, Sen S, Omastová M (2009) Polythiophene/SiO2 nanocomposites prepared in the presence of surfactants and their application to glucose biosensing. Synth Met 159:2022–2028. https://doi.org/10.1016/j.synthmet.2009.07.009

    Article  CAS  Google Scholar 

  25. Jung DJ, Piao MH, Oh SH, Woo JC, Choi SH (2010) Fabrication of chemiluminescence sensor based on conducting polymer@SiO2/nafion composite film. J Nanosci Nanotechnol 10:6855–6858. https://doi.org/10.1166/jnn.2010.2976

    Article  CAS  PubMed  Google Scholar 

  26. Boday DJ, Muriithi B, Stover RJ, Loy DA (2012) Polyaniline nano fiber–silica composite aerogels. J Non-Cryst Solids 358:1575–1580. https://doi.org/10.1016/j.jnoncrysol.2012.04.020

    Article  CAS  Google Scholar 

  27. Akhtar US, Miran MS, Susan MABH, Mollah MYA, Rahman MM (2012) Preparation and characterization of polyaniline-silica composite material. Bangladesh J Sci Ind Res 47:249–256

    Article  Google Scholar 

  28. Armes SP, Gottesfeld S, Beery JG, Garzon F, Agnew SF (1991) Conducting polymer-colloidal silica composites. Polymer 32:2325–2330. https://doi.org/10.1016/0032-3861(91)90068-T

    Article  CAS  Google Scholar 

  29. Maeda S, Armes SP (1994) Preparation and characterisation of novel polypyrrole-silica colloidal nanocomposites. J Mater Chem 4:935–942. https://doi.org/10.1039/JM9940400935

    Article  CAS  Google Scholar 

  30. Tang Q, Sun X, Li Q, Lin J, Wu J (2009) Preparation and electrical conductivity of SiO2/polypyrrole nanocomposite. J Mater Sci 44:849–854. https://doi.org/10.1007/s10853-008-3137-5

    Article  CAS  Google Scholar 

  31. Kelly TL, Yamada Y, Che SPY, Yano K, Wolf MO (2008) Monodisperse poly(3,4-ethylenedioxythiophene)-silica microspheres: Synthesis and assembly into crystalline colloidal arrays. Adv Mater 20:2616–2621. https://doi.org/10.1002/adma.200703131

    Article  CAS  Google Scholar 

  32. Gök A, Koçak ED, Aydoǧdu S (2005) Synthesis and characterization of PT/PS/SiO2 nanocomposite in nonaqueous medium by chemical method. J Appl Polym Sci 96:746–752. https://doi.org/10.1002/app.21513

    Article  CAS  Google Scholar 

  33. Tiwari M, Datta RN, Talma AG, Noordermeer JWM, Dierkes WK, Van Ooij WJ (2009) Comparative study of plasma-thiophene and-acetylene coated silica in SBR and EPDM reinforcement. Rubber Chem Technol 82:473–491. https://doi.org/10.5254/1.3548259

    Article  CAS  Google Scholar 

  34. Hong JY, Kwon E, Jang J (2009) Fabrication of silica/polythiophene core/shell nanospheres and their electrorheological fluid application. Soft Matter 5:951–953. https://doi.org/10.1039/b821291k

    Article  CAS  Google Scholar 

  35. Zacca MJ, Laurencin D, Richeter S, Clément S, Mehdi A (2018) New Layered Polythiophene-Silica Composite Through the Self-Assembly and Polymerization of Thiophene-Based Silylated Molecular Precursors. Molecules 23:2510. https://doi.org/10.3390/molecules23102510

    Article  CAS  PubMed Central  Google Scholar 

  36. Yang Z, Kou X, Ni W, Sun Z, Li L, Wang J (2007) Fluorescent Mesostructured Polythiophene-Silica Composite Particles Synthesized by in Situ Polymerization of Structure-Directing Monomers. Chem Mater 19:6222–6229. https://doi.org/10.1021/cm7020005

    Article  CAS  Google Scholar 

  37. Clément S, Tizit A, Desbief S, Mehdi A, De Winter J, Gerbaux P, Lazzaroni R, Boury B (2011) Synthesis and characterisation of π-conjugated polymer/silica hybrids containing regioregular ionic polythiophenes. J Mater Chem 21:2733–2739. https://doi.org/10.1039/c0jm03598j

    Article  CAS  Google Scholar 

  38. Kubo M, Takimoto C, Minami Y, Uno T, Itoh T, Shoyama M (2005) Incorporation of π-conjugated polymer into silica: Preparation of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]/silica and poly(3-hexylthiophene)/silica composites. Macromolecules 38:7314–7320. https://doi.org/10.1021/ma0508956

    Article  CAS  Google Scholar 

  39. Garg M, Padmanabhan V (2016) Addition of P3HT-grafted Silica nanoparticles improves bulk-heterojunction morphology in P3HT-PCBM blends. Sci Rep 6:1–12. https://doi.org/10.1038/srep33219

    Article  CAS  Google Scholar 

  40. La Mantia FP, Morreale M (2011) Green composites: A brief review. Compos Part A Appl Sci Manuf 42:579–588. https://doi.org/10.1016/j.compositesa.2011.01.017

    Article  CAS  Google Scholar 

  41. Affandi S, Setyawan H, Winardi S, Purwanto A, Balgis R (2009) A facile method for production of high-purity silica xerogels from bagasse ash. Adv Powder Technol 20:468–472. https://doi.org/10.1016/j.apt.2009.03.008

    Article  CAS  Google Scholar 

  42. Chandrasekhar S, Pramada PN, Majeed J (2006) Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash. J Mater Sci 41:7926–7933. https://doi.org/10.1007/s10853-006-0859-0

    Article  CAS  Google Scholar 

  43. Liou TH, Yang CC (2011) Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater Sci Eng B 176:521–529. https://doi.org/10.1016/j.mseb.2011.01.007

    Article  CAS  Google Scholar 

  44. Matori KA, Haslinawati MM, Wahab ZA, Sidek HAA, Ban TK, Ghani WAWAK (2009) Producing Amorphous White Silica from Rice Husk. J Basic Appl Sci 1:512–515

    Google Scholar 

  45. Mofijur M, Mahlia TMI, Logeswaran J, Anwar M, Silitonga AS, Rahman SMA, Shamsuddin AH (2019) Potential of rice industry biomass as a renewable energy source Energies 12:4116. https://doi.org/10.3390/en12214116

    Article  CAS  Google Scholar 

  46. FAO (2020) Food and Agriculture Organization of the United Nations. http://www.fao.org. Accessed 15 Sept. 2020

  47. Zafar S (2020) BioEnergy CONSULT Powering a Greener Future, Biomass Resour. from Rice Ind. https://www.bioenergyconsult.com/biomass-resources-rice-industry/

  48. Gu S, Zhou J, Yu C, Luo Z, Wang Q, Shi Z (2015) A novel two-staged thermal synthesis method of generating nanosilica from rice husk via pre-pyrolysis combined with calcination. Ind Crop Prod 65:1–6. https://doi.org/10.1016/j.indcrop.2014.11.045

    Article  CAS  Google Scholar 

  49. El-Sakhawy M, Adel AM, Diab MA, Al-Shemy M (2020) Facile methods for the preparation of micro- and mesoporous amorphous silica from rice husk. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01112-2

    Article  Google Scholar 

  50. Carmona VB, Oliveira RM, Silva WTL, Mattoso LHC, Marconcini JM (2013) Nanosilica from rice husk : Extraction and characterization. Ind Crop Prod 43:291–296. https://doi.org/10.1016/j.indcrop.2012.06.050

    Article  CAS  Google Scholar 

  51. Arabahmadi V, Ghorbani M (2017) Pb (II) removal from water using surface-modified polythiophene-coated rice husk ash nanocomposite. J Inorg Nano-Met Chem 47:1614–1624. https://doi.org/10.1080/24701556.2017.1357589

    Article  CAS  Google Scholar 

  52. Ghorbani M, Lashkenari MS, Eisazadeh H (2011) Application of polyaniline nanocomposite coated on rice husk ash for removal of Hg(II) from aqueous media. Synth Met 161:1430–1433. https://doi.org/10.1016/j.synthmet.2011.05.016

    Article  CAS  Google Scholar 

  53. Ghorbani M, Eisazadeh H, Ghoreyshi AA (2012) Removal of Zinc Ions from Aqueous Solution Using Polyaniline Nanocomposite Coated on Rice Husk. Iran J Energy Environ 3:83–88. https://doi.org/10.5829/IDOSI.IJEE.2012.03.01.3343

    Article  Google Scholar 

  54. Ghorbani M, Eisazadeh H (2013) Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash. Composites: Part B 45:1–7. https://doi.org/10.1016/j.compositesb.2012.09.035

  55. Husain A, Ahmad S, Mohammad F (2020) April, Preparation and Applications of Polythiophene Nanocomposites, (JESC) The Journal of Engineering, Science and Computing Issue III, Volume I

  56. Gu S, Zhou J, Luo Z, Wang Q, Ni M (2013) A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Ind Crop Prod 50:540–549. https://doi.org/10.1016/j.indcrop.2013.08.004

    Article  CAS  Google Scholar 

  57. Liou TH (2004) Preparation and characterization of nano-structured silica from rice husk. Mater Sci Eng: A 364:313–323. https://doi.org/10.1016/j.msea.2003.08.045

    Article  CAS  Google Scholar 

  58. Sato M, Morii H (1991) Nuclear magnetic resonance studies on electrochemically prepared poly(3-dodecylthiophene). Macromolecules 24:1196–1200

    Article  CAS  Google Scholar 

  59. Rodrigues A, Castro MCR, Farinha ASF, Oliveira M, Tomé JPC, Machado AV, Raposo MMM, Hilliou L, Bernardo G (2013) Thermal stability of P3HT and P3HT:PCBM blends in the molten state. Polym Test 32:1192–1201. https://doi.org/10.1016/j.polymertesting.2013.07.008

    Article  CAS  Google Scholar 

  60. Hernández-Martínez D, León-Silva U, Nicho ME (2015) Corrosion protection of steel by poly (3-hexylthiophene) polymer blends. Anti-Corros Methods Mater 4:229–240. https://doi.org/10.1108/ACMM-12-2013-1331

    Article  CAS  Google Scholar 

  61. Ramani R, Srivastava J, Alam S (2010) Application of model-free kinetics to the thermal and thermo-oxidative degradation of poly(3-hexyl thiophene). Thermochim Acta 499:34–39. https://doi.org/10.1016/j.tca.2009.10.019

    Article  CAS  Google Scholar 

  62. Manceau M, Rivaton A, Gardette JL, Guillerez S, Lemaître N (2009) The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. Polym Degrad Stab 94:898–907. https://doi.org/10.1016/j.polymdegradstab.2009.03.005

    Article  CAS  Google Scholar 

  63. Sankar S, Sharma SK, Kaur N, Lee B, Young D, Lee S, Jung H (2016) Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceram Int 42:4875–4885. https://doi.org/10.1016/j.ceramint.2015.11.172

    Article  CAS  Google Scholar 

  64. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) Manual of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego

  65. Chen TA, Wu X, Rieke RD (1995) Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties. J Am Chem Soc 117:233–244. https://doi.org/10.1021/ja00106a027

    Article  CAS  Google Scholar 

  66. Junlabhut P, Boonruang S, Pecharapa W (2013) Optical Absorptivity Enhancement of SiO2 Thin Film by Ti and Ag Additive. Energy Procedia 34:734–739. https://doi.org/10.1016/j.egypro.2013.06.807

    Article  CAS  Google Scholar 

  67. Li X, Dai N, Wang G, Song X (2008) Composites without Any Stabilizer. J Appl Polym Sci 107:403–408. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  68. Saini V, Li Z, Bourdo S, Dervishi E, Xu Y, Ma X, Kunets VP, Salamo GJ, Viswanathan T, Biris AR, Saini D, Biris AS (2009) Electrical, Optical, and Morphological Properties of P3HT-MWNT Nanocomposites Prepared by in Situ Polymerization. J Phys Chem C 113:8023–8029

    Article  CAS  Google Scholar 

  69. Zengin H, Erkana B (2010) Synthesis and characterization of polyaniline/silicon dioxide composites and preparation of conductive films. Polym Adv Technol 21:216–223. https://doi.org/10.1002/pat.1492

    Article  CAS  Google Scholar 

  70. Kuila BK, Malik S, Batabyal SK, Nandi AK (2007) In-Situ Synthesis of Soluble Poly (3-hexylthiophene)/Multiwalled Carbon Nanotube Composite : Morphology, Structure, and Conductivity. Macromolecules 40:278–287. https://doi.org/10.1021/ma061548e

    Article  CAS  Google Scholar 

  71. Huang YJ, Lo WC, Liu SW, Cheng CH, Chen CT, Wang JK (2013) Unified assay of adverse effects from the varied nanoparticle hybrid in polymer-fullerene organic photovoltaics. Sol Energy Mater Sol Cells 116:153–170. https://doi.org/10.1016/j.solmat.2013.03.031

    Article  CAS  Google Scholar 

  72. Yu YH, Lai CY, Chen CL, Yeh JM (2006) Durable electrochromic coatings prepared from electronically conductive poly(3HT-co-3TPP)-silica hybrid materials. J Electron Mater 35:1571–1580. https://doi.org/10.1007/s11664-006-0151-8

    Article  CAS  Google Scholar 

  73. Chen SA, Tsai CC (1993) Structure/Properties of Conjugated Conductive Polymers. 2.3-Ether-Substituted Polythiophenes and Poly(4-methylthiophene)s. Macromolecules 26:2234–2239

    Article  CAS  Google Scholar 

  74. Sun ZW, Frank AJ (1991) Characterization of the intrachain chargegeneration mechanism of electronically conductive poly (3methylthiophene). J Chern Phys 94:4600–4608

    Article  CAS  Google Scholar 

  75. Sahalianov I, Hynynen J, Barlow S, Marder SR, Müller C, Zozoulenko I, (2020) UV-to-IR Absorption of Molecularly p-Doped Polythiophenes with Alkyl and Oligoether Side Chains: Experiment and Interpretation Based on Density Functional Theory. J Phys Chem B 124:11280–11293

    Article  CAS  Google Scholar 

  76. Tauc J, Grigorovici R, Vanc A (1966) Optical Properties and Electronic Structure of Amorphous Germanium. Phys Stat Sol 627:627–637. https://doi.org/10.1002/pssb.19660150224

    Article  Google Scholar 

  77. Biswas MC, Jeelani S, Rangari V (2017) Influence of biobased silica/carbon hybrid nanoparticles on thermal and mechanical properties of biodegradable polymer films. Compos Commun 4:43–53. https://doi.org/10.1016/j.coco.2017.04.005

    Article  Google Scholar 

  78. Bhattacharya SS, Chaudhari SB (2013) Change in physico-mechanical and thermal properties of polyamide/silica nanocomposite film. Int Jr Eng Res Devt 7:1–5

    Google Scholar 

  79. Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sustain Energy Rev 53:1468–1485. https://doi.org/10.1016/j.rser.2015.09.051

    Article  Google Scholar 

  80. Vinoth M, Surendhiran S, Senthilmurugan PR, Rajendran V (2019) Enhanced Photovoltaic Performance of Hybrid Solar Cells with a Calcium Interfacial Metal Electrode. J Electron Mater 48:4589–4597. https://doi.org/10.1007/s11664-019-07242-2

    Article  CAS  Google Scholar 

  81. Wen T, Krishnan KM (2011) Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications. J Phys D Appl Phys 44:393001. https://doi.org/10.1088/0022-3727/44/39/393001

    Article  CAS  Google Scholar 

  82. Sonar P, Sreenivasan KP, Madddanimath T (2006) Comparative behavior of CdS and CdSe quantum dots in poly ( 3-hexylthiophene ) based nanocomposites. 41:198–208. https://doi.org/10.1016/j.materresbull.2005.07.032

  83. Kalagi SS, Patil PS (2016) Secondary electrochemical doping level effects on polaron and bipolaron bands evolution and interband transition energy from absorbance spectra of PEDOT: PSS thin films. Synth Met 220:661–666. https://doi.org/10.1016/j.synthmet.2016.08.009

    Article  CAS  Google Scholar 

  84. Singh A, Chowdhury DR, Paul A (2014) A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry. Analyst 139:5747–5754. https://doi.org/10.1039/C4AN01325E

    Article  CAS  PubMed  Google Scholar 

  85. León-Silva U, Nicho ME, Hu H (2008) Comparative study of optical kinetics in single and dual poly3-methylthiophene-based solid electrochromic devices. J Solid State Electrochem 12:71–80. https://doi.org/10.1007/s10008-007-0352-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.E. Nicho thanks PRODEP for the support received to carry out a short research stay at the Instituto Nacional de Electricidad y Energías Limpias (INEEL). The authors thank the Laboratorio Nacional de Estructura de Macromoléculas (Conacyt 315896) for the 1H RMN analysis, Dra. Mary Cruz Resendiz González for SEM images, and Dr. René Guardian Tapia by XRD analysis.

Funding

The research was not supported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Nicho.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergara-Juárez, F., Baray-Calderón, A., León-Silva, U. et al. Effect of incorporating silica extracted from natural source in poly(3-hexylthiophene-2,5-diyl). J Polym Res 28, 485 (2021). https://doi.org/10.1007/s10965-021-02852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02852-z

Keywords

Navigation