Skip to main content
Log in

Development of silver immobilized biofunctional PET Fabric for antimicrobial wound dressing

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Wound dressings were prepared by using polyethylene terephthalate (PET) fabric as the base material. The functionality of the fabric was enhanced by alkaline hydrolysis. The hydrolysis of the fabric led to the formation of carboxyl groups on its surface. FTIR and contact angle measurements were carried out to monitor the chemical and physical changes on the fabric surface. Silver was immobilized on the fabric as the bioactive component. The fabric was characterized by EDX in mapping mode to observe distribution of silver on the fabric. PEG 600 used as carrier for silver ions to be loaded of the material surface. Antimicrobial studies of the fabric was carried out by zone of inhibition and colony reduction methods against E. coli and S. aureus. Bacterial adhesion was completely inhibited in silver immobilized samples. On the basis of observations from mechanical analysis, EDX, carboxyl content estimation, and antibacterial resistance we concluded that material was the most suitable sample to develop wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mezemir R, Seid A, Gishu T, Demas T, Gize AJPsis (2020) 14:1–7

  2. Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, Zhang Y, Timashev P (2019) Stem Cell Res Ther 10:1–16

    Article  Google Scholar 

  3. Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S (2019) J Appl Polym Sci. 136:47738

  4. Oliani WL, Parra DF, Komatsu LGH, Lincopan N, Rangari VK, Lugao AB (2017) Mater Sci Eng, C 75:845–853

    Article  CAS  Google Scholar 

  5. Singh S, Gupta A, Sharma D, Gupta B (2018) Int J Biol Macromol 113:227–239

    Article  CAS  Google Scholar 

  6. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER (2020) Carbohyd Polym. 236:116025

  7. Campoccia D, Montanaro L, Arciola CR (2013) Biomaterials 34:8533–8554

    Article  CAS  Google Scholar 

  8. Tummalapalli M, Berthet M, Verrier B, Deopura B, Alam M, Gupta B (2016) Int J Biol Macromol 82:104–113

    Article  CAS  Google Scholar 

  9. Goddard JM, Hotchkiss J (2007) Prog Polym Sci 32:698–725

    Article  CAS  Google Scholar 

  10. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) J Pharm Sci 97:2892–2923

    Article  CAS  Google Scholar 

  11. Homaeigohar S, Boccaccini AR (2020) Acta Biomater 107:25–49

    Article  CAS  Google Scholar 

  12. Agarwal R, Alam MS, Gupta BJJoB (2013) T. Engineering. 3:273–283

  13. Rajendran R, Radhai R, Kotresh T, Csiszar EJCp (2013) 91:613–617

  14. Koumentakou I, Terzopoulou Z, Michopoulou A, Kalafatakis I, Theodorakis K, Tzetzis D (2020) D J I J o B M Bikiaris 162:693–703

    CAS  Google Scholar 

  15. Farahani H, Barati A, Arjomandzadegan M (2020) E J I J o B M Vatankhah 162:762–773

    CAS  Google Scholar 

  16. Kamoun EA, Kenawy E-RS (2017) X J J o a r Chen 8:217–233

    CAS  Google Scholar 

  17. Xu Z, Han S, Gu Z (2020) J J A h m Wu 9:1901502

    CAS  Google Scholar 

  18. Zhong Y, Xiao H, Seidi F (2020) Y J B Jin 21:2983–3006

    CAS  Google Scholar 

  19. Chen H, Cheng R, Zhao X, Zhang Y, Tam A, Yan Y, Shen H, Zhang YS, Qi J (2019) Y J N A M Feng 11:1–12

    Google Scholar 

  20. Ngece K, Aderibigbe B, Ndinteh D, Fonkui Y (2021) P J I J o B M Kumar 172:350–359

    CAS  Google Scholar 

  21. Johnson K-A, Muzzin N, Toufanian S, Slick RA, Lawlor MW, Seifried B, Moquin P, Latulippe D (2020) T J A B Hoare 112:101–111

    CAS  Google Scholar 

  22. Zhang M, Zhao XJIJoBM  (2020)

  23. Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z (2018) J J R a Wang 8:7533–7549

    CAS  Google Scholar 

  24. El-Aassar M, Ibrahim OM, Fouda MM, Fakhry H, Ajarem J, Maodaa SN, Allam AA, Hafez EEJCP (2021) 255:117484

  25. Negi P, Sharma G, Verma C, Garg P, Rathore C, Kulshrestha S, Lal UR, Gupta B,  Pathania DJCp (2020) 230:115659

  26. Jayakumar R, Prabaharan M, Kumar PS, Nair S (2011) H J B a Tamura 29:322–337

    CAS  Google Scholar 

  27. Ning CC, Logsetty S, Ghughare S (2014) S J B Liu 40:1164–1171

    Google Scholar 

  28. Gupta B, Mishra S, Saxena SJRp (2008) Chemistry. 77:553–560

  29. Gupta B, Hilborn J, Plummer C, Bisson I, Frey PJJoAPS  (2002) 85:1874–1880

  30. Ma Z, Kotaki M, Yong T, He W (2005) S J B Ramakrishna 26:2527–2536

    CAS  Google Scholar 

  31. Mogrovejo-Valdivia A, Rahmouni O, Tabary N, Maton M, Neut C, Martel B, Blanchemain NJIjop (2019) 556:301–310

  32. Gök ZG, Yiğitoğlu M, Vargel I, Şahin Y, Alçığır MEJMC (2021) Physics. 259:124043

  33. Yin J (2020) L J I J o B M Xu 160:352–363

    CAS  Google Scholar 

  34. Verma C, Gupta A, Singh S, Somani M, Sharma A, Singh P, Bhan S, Dey A, Rymbai R, Lyngdoh AJAABM (2021)

  35. Kumar PS, Abhilash S, Manzoor K, Nair S, Tamura H, Jayakumar RJCP (2010) 80:761–767

  36. You C, Li Q, Wang X, Wu P, Ho JK, Jin R, Zhang L, Shao H (2017) C J S r Han 7:1–11

    Google Scholar 

  37. Li J, Wang J, Shen L, Xu Z, Li P, Wan G, Huang NJS (2007) C Technology 201:8155–8159

    CAS  Google Scholar 

  38. Siegel J, Savenkova T, Pryjmaková J, Slepička P, Šlouf M, Švorčík VJM (2021) 14:3263

  39. Martins N, Rodrigues CF (2020) Multidisciplinary Digital Publishing Institute

  40. Nguyenova H, Vokata B, Zaruba K, Siegel J, Kolska Z, Svorcik V, Slepicka P,  Reznickova AJR (2019) F. Polymers. 145:104376

  41. Shu Y-T, Kao K-T, Weng C-SJMS (2017) E C 77:606–612

    CAS  Google Scholar 

  42. Gupta B, Plummer C, Bisson I, Frey P (2002) J J B Hilborn 23:863–871

    CAS  Google Scholar 

  43. Reznickova A, Novotna Z, Kolska Z, Svorcik VJNrl (2014). 9:1–6

  44. Wang C, Ren Y, Lv J, Zhou Q, Ma Z, Qi Z, Chen J, Liu G, Gao D (2017) Z J A S S Lu 396:1840–1848

    CAS  Google Scholar 

  45. Koosehgol S, Ebrahimian-Hosseinabadi M, Alizadeh M, Zamanian AJMS (2017) E C 79:66–75

    CAS  Google Scholar 

  46. Capanema NS, Mansur AA, Carvalho SM, Carvalho IC, Chagas P, de Oliveira LCA, HSJC (2018) p. Mansur. 195:401–412

  47. Lih E, Lee JS, Park KM (2012) K D J A b Park 8:3261–3269

    CAS  Google Scholar 

  48. Xu M, Liu J, Xu X, Liu S, Peterka F, Ren Y (2018) X J M Zhu 11:1787

    Google Scholar 

  49. Anjum S, Gupta A, Kumari S, B. J. I. J. o. P. M, Gupta P (2020) Biomaterials. 69:1034–1042

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chetna Verma or Bhuvanesh Gupta.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, H., Verma, C., Sharma, A. et al. Development of silver immobilized biofunctional PET Fabric for antimicrobial wound dressing. J Polym Res 29, 29 (2022). https://doi.org/10.1007/s10965-021-02844-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02844-z

Keywords

Navigation