Skip to main content

Advertisement

Log in

Recycled high performance polyester fibers for cement designed from micromechanics theory

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The objective of this paper is designing a “greener” reinforced material of recycled PET (R-PET) fibers with high performance for cement. To balance the ductility and compression of fiber-reinforced cement composites (FRC), the reinforced fiber should be prepared with high mechanical property and FRC was designed based on micromechanics. First, the preparing processes of R-PET fibers are composed of melt-spinning of recycled PET and post-treatment (drawing, indentation and cutting). The effect of drawing ratio on the mechanical properties of R-PET fiber was studied by three phases model. The results showed that the R-PET fibers prepared has high mechanical properties (strength 736 ± 16 MPa; modulus 7.12 ± 1.6 GPa). Then, R-PET fibers were added in cement to prepare FRC and the results indicated that FRC tailed by micromechanics theoretical basis has high toughness and good compressive strength. Compared with plain cement, the result indicated that the compressive and bending strength of FRC with R-PET-3.1 at 16 kg/m3 content have increased by 41.0% and 113.5%, respectively. This melt spun R-PET fibers prepared by recycled PET bottle chips have the potential application in reinforcing and toughness of the cement mortar composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Soltan DG, das Neves P, Olvera A, Savastano Junior H, Li VC (2017) Ind Crop  Prod 103:1

  2. Zukowski B, Silva FDA, Toledo Filho RD (2018) Cem Concr Compos 89:150

  3. Felekoglu B, Tosun K, Baradan B (2009) J Mater Process Technol 209:5133

    Article  CAS  Google Scholar 

  4. Lin S, Li L (2011) Journal of Polymer Materials Science Engineering 27:120

    CAS  Google Scholar 

  5. Yang Y, Deng Y (2018) Construct Build Mater 182:258

    Article  CAS  Google Scholar 

  6. Kim KK, Urgessa GS, Yeon JH (2020) J Market Res 9:12773

    CAS  Google Scholar 

  7. Kasu SR, Mitra N, Muppireddy AR (2020) Road Mater Pavement Des 1

  8. Zhou M, Fang D, Jiang D (2016) Adv Mater Sci Eng 2016:1

    CAS  Google Scholar 

  9. Şimşek B, Uygunoğlu T (2018) Sādhanā 43

  10. Zarrabi N, Moghim MN, Eftekhar MR (2021) Construct Build Mater 267

  11. Hashemi MJ, Jamshidi M, Aghdam JH (2018) Constr Build Mater 163:767

    Article  CAS  Google Scholar 

  12. Gao Y, Zhang H, Kang H, Huang M, Lai F (2020) Constr Build Mater 263

  13. Halford B (2016) Chem Eng News 94:5

    CAS  Google Scholar 

  14. Ochi T, Okubo S, Fukui K (2007) Cement Concr Compos 29:448

    Article  CAS  Google Scholar 

  15. Jin BH, Huan LI, Qiang DU (2010) China Concrete Cement Products

  16. Welle F (2011) Resour Conserv Recycl 55:865

    Article  Google Scholar 

  17. Fraternali F, Farina I, Polzone C, Pagliuca E, Feo L (2013) Compos B Eng 46:207

    Article  CAS  Google Scholar 

  18. Kim J-HJ, Park C-G, Lee S-W, Lee S-W, Won J-P (2008) Compos Part B Eng 39:442

    Article  Google Scholar 

  19. Zhang Z, Wang C, Mai K (2019) Advanced Industrial Engineering Polymer Research 2:69

    Article  Google Scholar 

  20. Cui H, Jin Z, Zheng D, Tang W, Li Y, Yun Y, Lo TY, Xing F (2018) Constr Build Mater 181:713

    Article  CAS  Google Scholar 

  21. Li YF, Yang TH, Kuo CY, Tsai YK (2019) Materials 12

  22. Karihaloo BL, Wang JX (2000) Adv Eng Mater 2:726

    Article  Google Scholar 

  23. Zhang J, Xianchun J, Zhili G (2009) Journal of Building Materials 12:706

    CAS  Google Scholar 

  24. Lei Z, Li X, Qin F, Qiu W (2014) Scientific World Journal

  25. Wu G, Jiang JD, Tucker PA, Cuculo JA (1996) J Polym Sci B Polym Phys 34:2035

    Article  CAS  Google Scholar 

  26. Hamonic F, Miri V, Saiter A, Dargent E (2014) Eur Polymer J 58:233

    Article  CAS  Google Scholar 

  27. Pereira EB, Fischer G, Barros JAO (2012) Cem Concr Res 42:834

    Article  CAS  Google Scholar 

  28. Zhi-Qian Y (2009) Synthetic Fiber in China

  29. Li VC, Wu C, Wang SX, Ogawa A, Saito T (2002) ACI Mater J 99:463

    CAS  Google Scholar 

  30. Li V, Leung K (1992) J Eng Mech ASCE 118:2246

    Article  Google Scholar 

  31. Kanda T, Li VM (1999) J Eng Mech ASCE 125:373

  32. Huang Y, Liu Y, Jin Y, Guang J, Liu M (2014) Mech Compos Mater 50:515

    Article  Google Scholar 

  33. Jin X, Wang W, Xiao C, Lin T, Bian L, Hauser P (2016) Compos Sci Technol 128:169

    Article  CAS  Google Scholar 

  34. Standard specification for mortar cement, ASTM C1329–2004

  35. Kawakami D, Burger C, Ran S, Avila-Orta C, Sics I, Chu B, Chiao S-M, Hsiao BS, Kikutani T (2008) Macromolecules 41:2859

    Article  CAS  Google Scholar 

  36. Japan Concrete Institute (1983) JCI-SF4 Methods of tests for flexural strength and flexural toughness of fiber reinforced concrete. Japan: Japan Concrete Institute

  37. Lawton EL (1985) Polym Eng Sci 25:348

    Article  CAS  Google Scholar 

  38. Wang D, Luo F, She Z, Wu X, Qi Y (2017) RSC Advanced 7:37139

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the [Natural Science Funding of China] under Grant [number 51573136 and 51103101].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Jin, X., Ruan, F. et al. Recycled high performance polyester fibers for cement designed from micromechanics theory. J Polym Res 28, 471 (2021). https://doi.org/10.1007/s10965-021-02833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02833-2

Keywords

Navigation