Skip to main content
Log in

Chiral discrimination of enantiomers based on different interactions with alterable chiral oligomer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Series of chiral oligomer ((S)-1-(S)-7)) based on the different proportions of achiral fluorophore unit (9, 9-dipropyl alkynyl fluorene (1a)) and chiral unit ((S)-2-(4-isopropyl-4, 5-dihydrooxazol-2-yl)-2-(prop-2-yn-1-yl) pent-4-ynenitrile (1b)) via Glaser coupling method were synthesized. The results showed that the fluorescent probe can be applied to the recognition of different enantiomers by changing the ratio of fluorophore to chiral group in the oligomer. The hydrogen bonding between chiral units and enantiomers in oligomers and large steric hindrance of rigid achiral units on conformation of the polymers may be the reasons for the different recognition abilities of oligomer with different ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gal J (2019) Louis Pasteur, Chemical Linguist: Founding the Language of Stereochemistry. Helv Chim Acta 102:e1900098

  2. Koichi M, Riku O, Tamihito N (2018) Chiral gas chromatography of 2,5-diketopiperazines following a ring-opening derivatization method for complete isomeric separation. J Chromatogr A 1566:118–123

    Article  Google Scholar 

  3. Szakács Z, Sánta Z, Lomoschitz A et al (2018) Self-induced recognition of enantiomers (SIRE) and its application in chiral NMR analysis TrAC. Trends Anal Chem 109:180–197

    Article  Google Scholar 

  4. Li Ping L, He Long P, Bao Hui Y (2009) Chiral sensor for enantiomeric purity of amines, amino alcohols and amino esters based on bis-cyclometalated Ir(III) complex using 1H NMR spectroscopy. Inorg Chim Acta 482:691–697

    Google Scholar 

  5. Guo HS, Kim JM, Chang SM et al (2009) Chiral recognition of mandelic acid by l-phenylalanine-modified sensor using quartz crystal microbalance. Biosens Bioelectron 24(9):2931–2934

    Article  CAS  Google Scholar 

  6. Niu J, Rao L, Liu P et al (2018) Chiral recognition of dihydroxyphenylalanine enantiomers with (R)/(S)-2-Phenylpropionic acid grafted PProDOT electrochemical sensors. Synth Met 246:282–288

    Article  CAS  Google Scholar 

  7. Li W, Liang J, Yang W et al (2014) Chiral Functionalization of Graphene Oxide by Optically Active Helical-Substituted Polyacetylene Chains and Its Application in Enantioselective Crystallization. ACS Appl Mater Interfaces 6(12):9790–9798

    Article  CAS  Google Scholar 

  8. Raza S, Yong X, Deng J et al (2019) Optically Active Biobased Hollow Polymer Particles: Preparation, Chiralization, and Adsorption toward Chiral Amines. Ind Eng Chem Res 58(10):4090–4098

    Article  CAS  Google Scholar 

  9. Zhang Y, Liu X, Qiu S et al (2019) A Flexible Acetylcholinesterase-Modified Graphene for Chiral Pesticide Sensor. J Am Chem Soc 141(37):14643–14649

    Article  CAS  Google Scholar 

  10. Maeda K, Yashima E (2007) Dynamic Helical Structures: Detection and Amplification of Chirality. ChemInform 38(5):47–88

    Article  Google Scholar 

  11. Gupta R, Gonnade RG, Bedekar AV (2016) Application of roof-shape amines as chiral solvating agents for discrimination of optically active acids by NMR spectroscopy: study of match–mismatch effect and crystal structure of the diastereomeric salts. J Org Chem 81:7384–7392

    Article  CAS  Google Scholar 

  12. Huang HY, Bian GL, Zong H, Wang YB, Yang SW, Yue HF, Song L, Fan H (2016) Chiral sensor for enantiodiscrimination of varied acids. Org Lett 18:2524

    Article  CAS  Google Scholar 

  13. Nieto S, Dragna JM, Anslyn EV (2010) A facile CD protocol for rapid determination of enantiomeric excess and concentration of chiral primary amines. Chemistry 16:227–232

    Article  CAS  Google Scholar 

  14. Kumar A, Chae PS (2017) New 1, 8-naphthalimide-conjugated sulfonamide probes for TNP sensing in water. Sens Actuators B Chem 240:1–9

    Article  CAS  Google Scholar 

  15. Wu YB, Guo HM, James TD, Zhao JZ (2011) Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor. J Org Chem 76:5685–5695

    Article  CAS  Google Scholar 

  16. Banerjee S, Veale EB, Phelan CM et al (2013) Recent advances in the development of 1, 8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem Soc Rev 42:601–1618

    Google Scholar 

  17. D’Orazio G, Fanali C, Asensio-Ramos M, Fanail S (2017) Chiral separations in food analysis. TrAC, Trends Anal Chem 96:151–171

    Article  CAS  Google Scholar 

  18. Dey G, Venkateswarulu M, Vivekananthan V, Pramanik A, Krishnan V, Koner RR (2016) Sub-picomolar recognition of Cr3+ through bioinspired organic–inorganic ensemble utilization. ACS Sens 1:663–669

    Article  CAS  Google Scholar 

  19. Braña MF, Castellano JM, Morán M et al (1993) Bis-naphthalimides: a new class of antitumor agents. Anticancer Drug Des 8:257–268

    PubMed  Google Scholar 

  20. Zhao F, Tian J, Wu X et al (2020) A near-IR Fluorescent Probe for Enantioselective Recognition of Amino Acids in Aqueous Solution. J Org Chem 85:7342–7348

    Article  CAS  Google Scholar 

  21. Zhu YY, Wu XD, Gu SX, Pu L (2018) Free amino acid recognition: a bisbinaphthyl-based fluorescent probe with high enantioselectivity. J Am Chem Soc 141:175–181

    Article  Google Scholar 

  22. Wang Q, Wu XD, Pu L (2019) Excitation of one fluorescent probe at two different wavelengths to determine the concentration and enantiomeric composition of amino acids. Org Lett 21:9036–9039

    Article  CAS  Google Scholar 

  23. Wang CY, Zeng C, Zhang XL, Pu L (2017) Enantioselective Fluorescent Recognition of Amino Acids by Amide Formation: An Unusual Concentration Effect. J Org Chem 82:12669–12673

    Article  CAS  Google Scholar 

  24. Zhang X, Chi L, Ji SM, Wu YB, Song P, Han KL, Guo HM, James TD, Zhao JZ (2009) Rational Design of d-PeT Phenylethynylated-Carbazole Monoboronic Acid Fluorescent Sensors for the Selective Detection of α-Hydroxyl Carboxylic Acids and Monosaccharides. J Am Chem Soc 131:17452–17463

    Article  CAS  Google Scholar 

  25. Wu YB, Guo HM, James TD, Zhao JZ (2011) Enantioselective recognition of mandelic acid by a 3,6-Dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor. J Org Chem 76:5685–5695

  26. Wu YB, Guo HM, Zhang X, James TD, Zhao JZ (2011) Chiral Donor Photoinduced-Electron-Transfer (d-PET) Boronic Acid Chemosensors for the Selective Recognition of Tartaric Acids, Disaccharides, and Ginsenosides. Chem Eur J 17:7632–7644

    Article  CAS  Google Scholar 

  27. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K (2016) Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev 116:13752–13990

    Article  CAS  Google Scholar 

  28. Wang SM, Yang Y, Shi XY, Liu LY, Chang WX, Li J (2020) Multiple Stimuli-Responsiveness Fluorescent Probe Derived from Cyclopolymers and Pyrene-Ended Ammonium Salts. ACS Applied Polymer Materials 2:2246–2251

    Article  CAS  Google Scholar 

  29. Pu L (2017) Simultaneous determination of concentration and enantiomeric composition in fluorescent sensing. Acc Chem Res 50:1032–1040

    Article  CAS  Google Scholar 

  30. Wu DT, Yu Y, Zhang J, Guo LL, Kong Y (2018) Chiral poly (ionic liquid) with nonconjugated backbone as a fluorescent enantioselective sensor for phenylalaninol and tryptophan. ACS Appl Mater Interfaces 10:23362–23368

    Article  CAS  Google Scholar 

  31. Song FY, Wei G, Wang L, Jiao JM, Cheng YX, Zhu CJ (2012) Salen-based chiral fluorescence polymer sensor for enantioselective recognition of α-hydroxyl carboxylic acids. J Org Chem 77:4759–4764

    Article  CAS  Google Scholar 

  32. Li Q, Peng YY, Han S, Lan TQ, Zhang J, Cao J (2020) Synthesis of Optically Active Graft Copolymers Carrying Polylactide Arms as Fluorescent Sensor for Recognition of Pyroglutamic Acid Enantiomer. ChemistrySelect 5:6549–6555

    Article  CAS  Google Scholar 

  33. Miyabe T, Iida H, Banno M, Yamaguchi T, Yashima E (2011) Synthesis and Visualization of a Core Cross-Linked Star Polymer Carrying Optically Active Rigid-Rod Helical Polyisocyanide Arms and Its Chiral Recognition Ability. Macromolecules 44:8687–8692

    Article  CAS  Google Scholar 

  34. Leophairatana P, Samanta S, De Silva CC, Koberstein JT (2017) Preventing alkyne–alkyne (ie, Glaser) coupling associated with the ATRP synthesis of alkyne-functional polymers/macromonomers and for alkynes under click (ie, CuAAC) reaction conditions. J Am Chem Soc 139:3756–3766

    Article  CAS  Google Scholar 

  35. Bakhoda A, Okoromoba OE, Greene C, Boroujeni MR, Warren BJA, TH (2020) Three-Coordinate Copper (II) Alkynyl Complex in C-C Bond Formation: The Sesquicentennial of the Glaser Coupling. J Am Chem Soc 142:18483–18490

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hunan Provincial Natural Science Foundation of China (No. 2016JJ6147) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Cao.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2001 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lan, T., Li, Q. et al. Chiral discrimination of enantiomers based on different interactions with alterable chiral oligomer. J Polym Res 28, 486 (2021). https://doi.org/10.1007/s10965-021-02832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02832-3

Keywords

Navigation