Skip to main content

Advertisement

Log in

Effect of a novel bio-based β-nucleating agent on the properties of isotactic polypropylene

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study reported a series of esterified lignin metal salts (EL-M, M = Na, Mg, Ca, Ba, Zn) derived from lignin as nucleating agents, which were used in isotactic polypropylene (iPP). The crystallization and melting behavior and mechanical properties of iPP/EL-M composites were studied. The results of differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) revealed that the crystallization temperature of iPP/EL-M composites increased by 5 to 8 °C compared with that of pure iPP. Simultaneously, EL-Zn, EL-Ba and EL-Ca all had strong β-crystal induction ability to iPP. Especially, when the addition amount of EL-Zn in iPP was 0.20 wt%, the relative β-content of iPP/EL-Zn reached up to 0.9277, and it was basically not affected by the cooling rate, indicating that EL-Zn was extremely active, selective and stable for iPP. For the vantage, the results of mechanical properties and SEM revealed that EL-Zn, EL-Ba or EL-Ca could improve the toughness of iPP to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang X, Zhao S, Kuo S-W, Chen W-C, Mohamed MG, Xin Z (2021) An effective nucleating agent for isotactic polypropylene (iPP): Zinc bis- (nadic anhydride) double-decker silsesquioxanes. Polymer 220:123574–123583

    Article  CAS  Google Scholar 

  2. Shirvanimoghaddam K, Balaji KV, Yadav R, Zabihi O, Ahmadi M, Adetunji P, Naebe M (2021) Balancing the toughness and strength in polypropylene composites. Compos B Eng 223:109121–109153

    Article  Google Scholar 

  3. Qin W, Zhang X, Shao L, Xin Z, Ling H, Zhao S (2021) Failure mechanism of zinc adipate as a β-nucleating agent for polypropylene in the presence of calcium stearate. Polymer 215:123374–123382

    Article  CAS  Google Scholar 

  4. Ding C, Wu G-G, Zhang Y, Yang Y, Yin B, Yang M-B (2019) Effect of surfactant assisted β-nucleating agent self-assembly on the crystallization of polypropylene. Polymer 184:121895–121916

    Article  CAS  Google Scholar 

  5. Wu M-H, Wang C-C, Chen C-Y (2020) Chemical modification of atactic polypropylene and its applications as a crystallinity additive and compatibility agent. Polymer 194:122386–122394

    Article  CAS  Google Scholar 

  6. Petchwattana N, Naknaen P, Sanetuntikul J (2019) Transformation of β to α phase of isotactic polypropylene nucleated with nano styrene butadiene rubber-based β-nucleating agent under microwave irradiation. J Cent South Univ 25(12):3098–3106

    Article  Google Scholar 

  7. S Wadi V, Jena KK, Halique K, Alhassan SM (2020) Enhanced Mechanical Toughness of Isotactic Polypropylene Using Bulk Molybdenum Disulfide. ACS Omega 5(20):11394–11401

    Article  CAS  Google Scholar 

  8. Zhai Z, Liu Z, Feng L, Liu S (2014) Interfacial adhesion of glass fibre reinforced polypropylene–maleic anhydride modified polypropylene copolymer composites. J Reinf Plast Compos 33(8):785–793

    Article  Google Scholar 

  9. Song T, Ren Z, Li H, Sun X, Xue M, Yan S (2019) Modification of illite with calcium pimelate and its influence on the crystallization and mechanical property of isotactic polypropylene. Compos Part A: Appl S 123:200–207

    Article  CAS  Google Scholar 

  10. Wilsens C, Hawke LGD, Troisi EM, Hermida-Merino D, de Kort G, Leone N, Saralidze K, Peters GWM, Rastogi S (2018) Effect of Self-Assembly of Oxalamide Based Organic Compounds on Melt Behavior, Nucleation, and Crystallization of Isotactic Polypropylene. Macromolecules 51(13):4882–4895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Jiang X, Qin W, Zhang K, Xin Z, Zhao S (2021) Effect of the lanthanum and cerium phenylphosphonates on the crystallization and mechanical properties of isotactic polypropylene. J Polym Res 28(4):124–135

    Article  CAS  Google Scholar 

  12. Ahmad Saffian H, Talib MA, Lee SH, Md Tahir P, Lee CH, Ariffin H, Asa’ari AZM (2020) Mechanical Strength, Thermal Conductivity and Electrical Breakdown of Kenaf Core Fiber/Lignin/Polypropylene Biocomposite. Polymers 12(8):1833–1845

  13. Sousa Junior RRd, Gouveia JR, Nacas AM, Tavares LB, Ito NM, Moura ENd, Gaia FA, Pereira RF, Santos DJd (2019) Improvement of Polypropylene Adhesion by Kraft Lignin Incorporation. Mater Res 22(2)

  14. Kwon S, Zambrano MC, Pawlak JJ, Venditti RA (2021) Effect of lignocellulosic fiber composition on the aquatic biodegradation of wood pulps and the isolated cellulose, hemicellulose and lignin components: kinetic modelling of the biodegradation process. Cellulose 28(5):2863–2877

    Article  CAS  Google Scholar 

  15. Jin Y, Jing Y, Hu W, Lin J, Cheng Y, Yang X, Zhang K, Lu C (2021) Regulation mechanism of graphene oxide on the structure and mechanical properties of bio-based gel-spun lignin/poly (vinyl alcohol) fibers. Cellulose 28(8):4745-4760

  16. Ayoub A, Treasure T, Hansen L, Nypelö T, Jameel H, Khan S, Chang H-m, Hubbe MA, Venditti RA (2020) Effect of plasticizers and polymer blends for processing softwood kraft lignin as carbon fiber precursors. Cellulose 28(2):1039–1053

    Article  Google Scholar 

  17. Porkodi P, Abhilash JK, Sunil S, Pardhi TK, Shukla HK, Shete SK, Kumar A (2021) Lignin addition to polyacrylonitrile copolymer solution and its effect on the properties of carbon fiber precursor. J Polym Res 28(2):54–62

  18. Ye D, Kong J, Gu S, Zhou Y, Huang C, Xu W, Zhang X (2018) Selective aminolysis of acetylated lignin: Toward simultaneously improving thermal-oxidative stability and maintaining mechanical properties of polypropylene. Int J Biol Macromol 108:775–781

    Article  CAS  PubMed  Google Scholar 

  19. Liu L, Qian M, Song Pa, Huang G, Yu Y, Fu S (2016) Fabrication of Green Lignin-based Flame Retardants for Enhancing the Thermal and Fire Retardancy Properties of Polypropylene/Wood Composites. ACS Sustainable Chem Eng 4(4):2422–2431

    Article  CAS  Google Scholar 

  20. Chen Y, Yang S, Yang H, Zhang M, Zhang Q, Li Z (2016) Toughness Reinforcement in Carbon Nanotube-Filled High Impact Polypropylene Copolymer with β-Nucleating Agent. Ind Eng Chem Res 55(32):8733–8742

    Article  CAS  Google Scholar 

  21. Canetti M, Bertini F, De Chirico A, Audisio G (2006) Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym Degrad Stab 91(3):494–498

    Article  CAS  Google Scholar 

  22. Alexy P, Kosˇı´kova´ B, Podstra´nska G (2000) The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer 41(13):4901–4908

    Article  CAS  Google Scholar 

  23. Kosikova B, Miklesova K, Demianova V (1993) Characteristics of free radicals in composite lignin/polypropylene films studied by the EPR method. Eur Polym J 29(11):1495–1497

    Article  Google Scholar 

  24. Saha K, Dasgupta J, Chakraborty S, Antunes FAF, Sikder J, Curcio S, dos Santos JC, Arafat HA, da Silva SS (2017) Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose 24(8):3191–3207

    Article  CAS  Google Scholar 

  25. Yu Y, Fu S, Song PA, Luo X, Jin Y, Lu F, Wu Q, Ye J (2012) Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym Degrad Stab 97:541–546

    Article  CAS  Google Scholar 

  26. Toriz G, Denes F, Young RA (2004) Lignin-polypropylene composites. Part 1: Composites from unmodified lignin and polypropylene. Polym Compos 23(5):806–813

    Article  Google Scholar 

  27. Zhang X, Zhao S, Mohamed MG, Kuo S-W, Xin Z (2020) Crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS). J Mater Sci 55(29):14642–14655

    Article  CAS  Google Scholar 

  28. Mohamed MG, Atayde EC, Matsagar BM, Na J, Yamauchi Y, Wu KCW, Kuo S-W (2020) Construction Hierarchically Mesoporous/Microporous Materials Based on Block Copolymer and Covalent Organic Framework. J Taiwan Inst Chem E 112:180–192

    Article  CAS  Google Scholar 

  29. Abdelwahab MA, Misra M, Mohanty AK (2019) Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on interfacial adhesion and performance. Ind Crops Prod 132:497–510

    Article  CAS  Google Scholar 

  30. Maldhure AV, Chaudhari AR, Ekhe JD (2010) Thermal and structural studies of polypropylene blended with esterified industrial waste lignin. J Therm Anal Calorim 103(2):625–632

    Article  Google Scholar 

  31. Atifi S, Miao C, Hamad WY (2017) Surface modification of lignin for applications in polypropylene blends. J Appl Polym Sci 134(29):45103–45112

    Article  Google Scholar 

  32. Younesi-Kordkheili H, Pizzi A (2020) Ionic liquid- modified lignin as a bio- coupling agent for natural fiber- recycled polypropylene composites. Compos B Eng 181:107587–107592

    Article  CAS  Google Scholar 

  33. Grząbka-Zasadzińska A, Klapiszewski Ł, Jesionowski T, Borysiak S (2020) Functional MgO–Lignin Hybrids and Their Application as Fillers for Polypropylene Composites. Molecules 25(4):864–879

    Article  PubMed Central  Google Scholar 

  34. Klapiszewski Ł, Grząbka-Zasadzińska A, Borysiak S, Jesionowski T (2019) Preparation and characterization of polypropylene composites reinforced by functional ZnO/lignin hybrid materials. Polym Test 79:106058–106066

    Article  Google Scholar 

  35. Chatterjee S, Clingenpeel A, McKenna A, Rios O, Johs A (2014) Synthesis and characterization of lignin-based carbon materials with tunable microstructure. RSC Adv 4(9):4743–4753

    Article  CAS  Google Scholar 

  36. Li JX, Cheung WL (1998) On the deformation mechanisms of β-polypropylene: 1. Effect of necking on β-phase PP crystals. Polymer 39(26):6935–6940

  37. Li JX, Cheung WL, Jia D (1999) A study on the heat of fusion of β-polypropylene. polymer 40(5):1219–1222

  38. Jones AT, Aizlewood JM, Beckett DR (1964) Crystalline Forms of Isotactic Polypropylene. Macromol Chem Phys 75(1):134–158

    Article  Google Scholar 

  39. Li J, Bai X, Fang Y, Chen Y, Wang X, Chen H, Yang H (2020) Comprehensive mechanism of initial stage for lignin pyrolysis. Combust Flame 215:1–9

    Article  CAS  Google Scholar 

  40. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13):1781–1788

    Article  CAS  Google Scholar 

  41. Wei Z, Zhang W, Chen G, Liang J, Yang S, Wang P, Liu L (2010) Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim 102(2):775–783

    Article  CAS  Google Scholar 

  42. Zhang Z, Wang C, Meng Y, Mai K (2012) Synergistic effects of toughening of nano-CaCO3 and toughness of β-polypropylene. Compos Part A: Appl S 43(1):189–197

    Article  Google Scholar 

  43. Dong M, Guo Z-X, Yu J, Su Z-Q (2009) Study of the Assembled Morphology of Aryl Amide Derivative and Its Influence on the Nonisothermal Crystallizations of Isotactic Polypropylene. J Polym Sci, Part B: Polym Phys 47(3):314–325

    Article  CAS  Google Scholar 

  44. Supaphol P (2000) Nonisothermal Bulk Crystallization and Subsequent Melting Behavior of Syndiotactic Polypropylenes: Crystallization from the Melt State. J Appl Polym Sci 78(2):338–354

    Article  CAS  Google Scholar 

  45. Lorenzo MLD, Silvestre C (1999) Non-isothermal crystallization of polymers. Prog Polym Sci 24(6):917–950

    Article  Google Scholar 

  46. Sun X, Li H, Wang J, Yan S (2006) Shear-Induced Interfacial Structure of Isotactic Polypropylene (iPP) in iPP/Fiber Composites. Macromolecules 39(25):8720–8726

    Article  CAS  Google Scholar 

  47. Stocker W, Schumacher M, Graff S, Thierry A, Wittmann J-C, Lotz B (1998) Epitaxial Crystallization and AFM Investigation of a Frustrated Polymer Structure: Isotactic Poly(propylene), β Phase. Macromolecules 31(3):807–814

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to National Natural Science Foundation of China (No. 21376031) and Hunan Provincial Natural Science Foundation of China (No. 2019JJ40294) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Fei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 376 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, YF., Li, Y. et al. Effect of a novel bio-based β-nucleating agent on the properties of isotactic polypropylene. J Polym Res 28, 473 (2021). https://doi.org/10.1007/s10965-021-02826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02826-1

Keywords

Navigation