Skip to main content
Log in

Crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS)

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS) were investigated in detail. It is observed that POSS acts as an effective nucleating agent under appropriate concentration in the PET system. Polarized optical microscopy (POM) results showed that POSS improved the nucleation density of PET. Besides, the transmission electron microscopy (TEM) observation demonstrated POSS dispersed mostly at the nanometer scale throughout the PET matrix. The crystal structures of POSS and PET/POSS were analyzed using wide-angle X-ray diffraction (WAXD). Moreover, non-isothermal crystallization kinetics of PET and PET/POSS were studied using Mo’s method. The PET/POSS system demonstrated the lower value of F(T) than pure PET, indicating that the lower cooling rate was required to attain a specified relative crystallinity for the system. The comparison of the crystallization activation energy (ΔE) showed that the POSS nanoparticles improved the crystallization of PET through an acceleration of the nucleation process. Furthermore, the isothermal crystallization behaviors were also investigated using classic Avrami method. Overall, POSS can act as a nucleating agent and greatly improve the crystallization of PET through accelerating the nucleation process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Xing S, Li R, Si J, Tang P (2016) In situ polymerization of poly(styrene-alt-maleic anhydride)/organic montmorillonite nanocomposites and their ionomers as crystallization nucleating agents for poly(ethylene terephthalate). J Ind Eng Chem 38:167–174. https://doi.org/10.1016/j.jiec.2016.04.020

    Article  CAS  Google Scholar 

  2. Kim K, Kashani Rahimi S, Alam TM, Sorte EG, Otaigbe JU (2018) Unexpected effects of inorganic phosphate glass on crystallization and thermo-rheological behavior of polyethylene terephthalate. Polymer 154:135–147. https://doi.org/10.1016/j.polymer.2018.08.066

    Article  CAS  Google Scholar 

  3. Jiang XL, Luo SJ, Sun K, Chen XD (2007) Effect of nucleating agents on crystallization kinetics of PET. Express Polym Lett 1(4):245–251. https://doi.org/10.3144/expresspolymlett.2007.37

    Article  CAS  Google Scholar 

  4. Chuah HH (2001) Crystallization kinetics of poly (trimethylene terephthalate). Polym Eng Sci 41(2):308–313. https://doi.org/10.1002/pen.10730

    Article  CAS  Google Scholar 

  5. Dong F, Lu L, Ha CS (2019) Silsesquioxane-containing hybrid nanomaterials: fascinating platforms for advanced applications. Chem Phys Macromol. https://doi.org/10.1002/macp.201800324

    Article  Google Scholar 

  6. Mohmed MG, Kuo S-W (2016) Polybenzoxazine/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymers. 8(225):12. https://doi.org/10.3390/polym8060225

    Article  CAS  Google Scholar 

  7. Laine ASRM (1996) Silsesquioxanes as synthetic platforms. thermally curable and photocurable inorganic/organic hybrids. Macromolecules 29:2327–2330. https://doi.org/10.1021/ma951499y

    Article  Google Scholar 

  8. Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36(12):1649–1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002

    Article  CAS  Google Scholar 

  9. Raftopoulos KN, Pielichowski K (2016) Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog Polym Sci 52:136–187. https://doi.org/10.1016/j.progpolymsci.2015.01.003

    Article  CAS  Google Scholar 

  10. Zhao Y, Schiraldi DA (2005) Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 46(25):11640–11647. https://doi.org/10.1016/j.polymer.2005.09.070

    Article  CAS  Google Scholar 

  11. Yang H, Caydamli Y, Fang X, Tonelli AE (2015) Crystallization behaviors of modified poly (ethylene terephthalate) and their self-nucleation ability. Macromol Mater Eng 300(4):403–413. https://doi.org/10.1002/mame.201400348

    Article  CAS  Google Scholar 

  12. Teng S, Qiu Z (2017) Nucleating and plasticization effects of low-loading octavinyl-polyhedral oligomeric silsesquioxanes in novel biodegradable poly(ethylene succinate-co-diethylene glycol succinate)-based nanocomposite. Ind Eng Chem Res 56(50):14807–14813. https://doi.org/10.1021/acs.iecr.7b04004

    Article  CAS  Google Scholar 

  13. Chen K, Yu J, Qiu Z (2013) Effect of low octavinyl-polyhedral oligomeric silsesquioxanes loading on the crystallization kinetics and morphology of biodegradable poly(ethylene succinate-co-5.1 mol % ethylene adipate) as an efficient nucleating agent. Indust Eng Chem Res 52(4):1769–1774. https://doi.org/10.1021/ie303510h

    Article  CAS  Google Scholar 

  14. Chen J-H, Chiou Y-D (2006) Crystallization behavior and morphological development of isotactic polypropylene blended with nanostructured polyhedral oligomeric silsesquioxane molecules. J Polym Sci Part B Polym Phys 44(15):2122–2134. https://doi.org/10.1002/polb.20878

    Article  CAS  Google Scholar 

  15. Zeng J, Kumar S, Iyer S, Schiraldi D, Gonzalez R (2005) Reinforcement of poly(ethylene terephthalate) fibers with polyhedral oligomeric silsesquioxanes (POSS). High Perform Polym 17:403–424. https://doi.org/10.1177/0954008305055562

    Article  CAS  Google Scholar 

  16. Vannier A, Duquesne S, Bourbigot S, Alongi J, Camino G, Delobel R (2009) Investigation of the thermal degradation of PET, zinc phosphinate, OMPOSS and their blends—identification of the formed species. Thermochim Acta 495(1–2):155–166. https://doi.org/10.1016/j.tca.2009.06.013

    Article  CAS  Google Scholar 

  17. Lee AS, Jeon H, Choi S-S, Park J, Hwang SY, Jegal J, Oh DX, Kim BC, Hwang SS (2017) Crystallization derivation of amine functionalized T12 polyhedral oligomeric silsesquioxane-conjugated poly(ethylene terephthalate). Compos Sci Technol 146:42–48. https://doi.org/10.1016/j.compscitech.2017.04.015

    Article  CAS  Google Scholar 

  18. Sirin H, Turan D, Ozkoc G, Gurdag S (2013) POSS reinforced PET based composite fibers: “Effect of POSS type and loading level”. Compos B Eng 53:395–403. https://doi.org/10.1016/j.compositesb.2013.05.033

    Article  CAS  Google Scholar 

  19. Milliman HW, Ishida H, Schiraldi DA (2012) Structure property relationships and the role of processing in the reinforcement of nylon 6-POSS blends. Macromolecules 45(11):4650–4657. https://doi.org/10.1021/ma3002214

    Article  CAS  Google Scholar 

  20. Yan Y, Gooneie A, Ye H, Deng L, Qiu Z, Reifler FA, Hufenus R (2018) Morphology and crystallization of biobased polyamide 56 blended with polyethylene terephthalate. Macromol Mater Eng. https://doi.org/10.1002/mame.201800214

    Article  Google Scholar 

  21. Fu BX, Yang L, Somani RH, Zong SX, Hsiao BS, Phillips S, Blanski R, Ruth P (2001) Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. J Polym Sci Part B Polym Phys 39(22):2727–2739. https://doi.org/10.1002/polb.10028

    Article  CAS  Google Scholar 

  22. Jiang X, Zhang W, Zhao S, Zhou S, Shi Y, Xin Z (2018) Effect of benzoic acid surface modified alumina nanoparticles on the mechanical properties and crystallization behavior of isotactic polypropylene nanocomposites. RSC Adv 8(37):20790–20800. https://doi.org/10.1039/c8ra01069b

    Article  CAS  Google Scholar 

  23. Zhang Z, Feng L, Li Y, Wang Y, Yan C (2015) Nonisothermal crystallization kinetics of poly(butylene terephthalate)/poly(ethylene terephthalate)/glass fiber composites. Polym Compos 36(3):510–516. https://doi.org/10.1002/pc.22966

    Article  CAS  Google Scholar 

  24. Nikam PN, Deshpande VD (2019) Isothermal crystallization kinetics of PET/alumina nanocomposites using distinct macrokinetic models. J Therm Anal Calorim 138(2):1049–1067. https://doi.org/10.1007/s10973-019-08192-x

    Article  CAS  Google Scholar 

  25. Zhishen M (2008) A method for the non-isothermal crystallization kinetics of polymers. Acta Polym Sin 7(7):656–671. https://doi.org/10.3724/SP.J.1105.2008.00656

    Article  Google Scholar 

  26. Gao J, Cao X, Zhang C, Hu W (2013) Non-isothermal crystallization kinetics of polypropylene/MAP-POSS nanocomposites. Polym Bull 70(7):1977–1990. https://doi.org/10.1007/s00289-013-0907-2

    Article  CAS  Google Scholar 

  27. Rasana N, Jayanarayanan K, Pegoretti A (2018) Non-isothermal crystallization kinetics of polypropylene/short glass fibre/multiwalled carbon nanotube composites. RSC Adv 8(68):39127–39139. https://doi.org/10.1039/c8ra07243d

    Article  CAS  Google Scholar 

  28. Meng X, Gong W, Chen W, Shi Y, Sheng Y, Zhu S, Xin Z (2018) Isothermal and non-isothermal crystallization of isotactic polypropylene in the presence of an α nucleating agent and zeolite 13X. Acta Thermochim. https://doi.org/10.1016/j.tca.2018.03.008

    Article  Google Scholar 

  29. Devaux E, C. (1997) A new method to determine the Avrami exponent by dsc studies of non-isothermal crystallization from the molten state. Polymer 38(3):497–502. https://doi.org/10.1016/S0032-3861(96)00552-6

    Article  Google Scholar 

  30. Ma Yl, Hu Gs, Ren Xl, Wang Bb (2007) Non-isothermal crystallization kinetics and melting behaviors of nylon 11/tetrapod-shaped ZnO whisker (T-ZnOw) composites. Mater Sci Eng A 460–461:611–618. https://doi.org/10.1016/j.msea.2007.01.133

    Article  CAS  Google Scholar 

  31. Cao L, Zheng A, Cao X, Yuan D, Xu C, Chen Y (2017) Morphology and non-isothermal crystallization of dynamically vulcanized PP/EPDM blends in situ compatibilized via magnesium dimethacrylate. Polym Test 62:68–78. https://doi.org/10.1016/j.polymertesting.2017.06.014

    Article  CAS  Google Scholar 

  32. Zhao S, Xu N, Xin Z, Jiang C (2012) A novel highly efficient β-nucleating agent for isotactic polypropylene. J Appl Polym Sci 123(1):108–117. https://doi.org/10.1002/app.34441

    Article  CAS  Google Scholar 

  33. Zhao S, Cai Z, Xin Z (2008) A highly active novel β-nucleating agent for isotactic polypropylene. Polymer 49(11):2745–2754. https://doi.org/10.1016/j.polymer.2008.04.012

    Article  CAS  Google Scholar 

  34. Teng S, Qiu Z (2017) Enhanced crystallization and mechanical properties of biodegradable poly(ethylene succinate) by octaisobutyl-polyhedral oligomeric silsesquioxanes in their nanocomposites. Thermochim Acta 649:22–30. https://doi.org/10.1016/j.tca.2017.01.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grants 21878089 and 21606084), the National Key R&D Program of China (2016YFB0302201), the Fundamental Research Funds for the Central Universities (22221818010), and the National Natural Science Funds of China (Grant No. 21776079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiao-Wei Kuo or Zhong Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, S., Mohamed, M.G. et al. Crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS). J Mater Sci 55, 14642–14655 (2020). https://doi.org/10.1007/s10853-020-05003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05003-9

Navigation