Skip to main content
Log in

Tandem catalysis of Atom Transfer Radical Polymerization of acrylonitrile based on simultaneous use of two copper complexes

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The novel approach for conducting ARGET ATRP based on simultaneous use of two copper complexes based on tris[2-(dimethylamino)ethyl]amine (Me6TREN), 2,2’-bipyridine (bipy) and tris(2-pyridylmethyl)amine (TPMA) in one pot is proposed. This approach allows to increase the rate of polymerization of acrylonitrile and to achieve polymers with high molecular weights. The performed electrochemical studies allowed establishing the possible mechanism of tandem catalysis where the more reducing complex mostly acts as activator determining the high polymerization rate while the second one reversible deactivates polymer chain preserving the control over the process. The influence of initiator nature and the ratio between copper catalysts on the polymerization rate and the molecular weight parameters of the samples was studied. It was shown that the proposed system may be applied for obtaining well-defined copolymers of acrylonitrile with methyl acrylate and dimethyl itaconate via ARGET ATRP mechanism using low copper concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2.
Scheme 3.

Similar content being viewed by others

References

  1. Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C (2020) Reversible-deactivation radical polymerization (Controlled/living radical polymerization): from discovery to materials design and applications. Prog in Polym Sci 111:101311

    Article  CAS  Google Scholar 

  2. Grishin DF, Grishin ID (2021) Modern trends in controlled synthesis of functional polymers: fundamental aspects and practical applications. Russ Chem Rev 90:231-264P

    Article  CAS  Google Scholar 

  3. Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog in Polym Sci 38:63–235

    Article  CAS  Google Scholar 

  4. Xian C, Yuan Q, Bao Z, Liu G, Wu J (2020) Progress on intelligent hydrogels based on RAFT polymerization: design strategy, fabrication and the applications for controlled drug delivery. Chin Chem Lett 31:19–27

    Article  CAS  Google Scholar 

  5. Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K (2018) Atom transfer radical polymerization: billion times more active catalysts and new initiation systems. Macromol Rapid Commun 40:1800616

    Article  Google Scholar 

  6. Ouchi M, Sawamoto M (2018) Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym J 50:83–94

    Article  CAS  Google Scholar 

  7. Krys P, Matyjaszewski K (2017) Kinetics of atom transfer radical polymerization. Eur Polym J 89:482–523

    Article  CAS  Google Scholar 

  8. Ribelli TG, Fantin M, Daran JC, Augustine KF, Poli R, Matyjaszewski K (2018) Synthesis and characterization of the most active copper ATRP catalyst based on tris[(4-dimethylaminopyridyl)methyl]amine. J Am Chem Soc 140:1525–1534

    Article  CAS  Google Scholar 

  9. Liu J, Huang Y, Yuan Y, Zhang X, Wang Y, Wang C (2018) Synthesis and properties of acrylonitrile-methyl itaconate copolymers as spun carbon fiber precursors. Fibers Polym 15:1583–1588

    Article  Google Scholar 

  10. Han N, Zhang XX, Wang XC (2010) Various comonomers in acrylonitrile based copolymers: effects on thermal behavior. Iran Polym J 19:243–253

    CAS  Google Scholar 

  11. Stakhi SA, Grishin DF, Grishin ID (2020) Determination of monomer reactivity ratios in controlled copolymerization of acrylonitrile with unsaturated methyl esters. Polym Sci Ser B 62:169–175

    Article  CAS  Google Scholar 

  12. Grishin ID, Stakhi SA, Kurochkina DY, Grishin DF (2018) Controlled copolymerization of acrylonitrile with methyl acrylate and dimethyl itaconate via ARGET ATRP mechanism. J Polym Res 25:261

    Article  Google Scholar 

  13. Dong H, Tang W, Matyjaszewski K (2007) Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP. Macromol 40:2974–2977

    Article  CAS  Google Scholar 

  14. Liu XH, Zhang GB, Li BX, Bai YG, Li YS (2010) Copper(0)-mediated living radical polymerization of acrylonitrile: SET-LRP or AGET-ATRP. J Polym Sci A Polym Chem 48:5439–5445

    Article  CAS  Google Scholar 

  15. Liu XH, Wang J, Yang JS, An SL, Ren YL, Yu YH, Chen P (2012) Fast copper catalyzed living radical polymerization of acrylonitrile utilizing a high concentration of radical initiator. J Polym Sci A Polym Chem 50:1933–1940

    Article  CAS  Google Scholar 

  16. Liu XH, Wang J, Zhang FJ, An SL, Ren YL, Yu YH, Chen P, Xie S (2012) Copper-mediated initiators for continuous activator regeneration atom transfer radical polymerization of acrylonitrile. J Polym Sci A Polym Chem 50:4358–4364

    Article  CAS  Google Scholar 

  17. Huang Z, Chen J, Zhang L, Cheng Z, Zhu X (2016) ICAR ATRP of acrylonitrile under ambient and high pressure. Polymers 8:59

    Article  Google Scholar 

  18. Chen H, Liu D, Chen L, Qu R (2011) Use of 1-alkyl-3-methylimidazolium l-lactates as both ligand and reaction media for AGET ATRP of acrylonitrile. Mat Chem Phys 128:331–335

    Article  CAS  Google Scholar 

  19. Hou C, Liang Y, Liu D, Tan Z, Zhang S, Zheng M, Qu R (2010) AGET ATRP of acrylonitrile with ionic liquids as reaction medium without any additional ligand. Mat Sci Eng C 30:605–609

    Article  Google Scholar 

  20. Chen H, Yang L, Liang Y, Hao Z, Lu Z (2009) ARGET ATRP of acrylonitrile catalyzed by FeCl3/isophthalic acid in the presence of air. J Polym Sci A Polym Chem 47:3202–3207

    Article  CAS  Google Scholar 

  21. Peng J, Ding M, Cheng Z, Zhang L, Zhu X (2015) Iron-mediated AGET ATRP with crown ether as both ligand and solvent. RSC Adv 5:104–733

    Google Scholar 

  22. Chen H, Chen L, Wang C, Qu R (2011) Atom transfer radical polymerization using activators regenerated by electron transfer of acrylonitrile in 1-(1-ethoxycarbonylethyl)-3-methylimidazolium hexafluorophospate. J Polym Sci A Polym Chem 49:1046–1049

    Article  CAS  Google Scholar 

  23. Chen H, Liu D, Ji N, Tan Z, ZongD QuR, Wang C (2011) Samarium(III)-based AGET ATRP of acrylonitrile using ascorbic acid as reducing agent. J Macromol Sci A 48:284–290

    Article  CAS  Google Scholar 

  24. Vogel AI (1974) Practical organic chemistry including qualitative organic analysis. Longman Group, London

    Google Scholar 

  25. Tyeklar Z, Jacobson RR, Wei N, Murthy NN, Zubieta J, Karlin KD (1993) Reversible reaction of dioxygen (and carbon monoxide) with a copper(I) complex. X-ray structures of relevant mononuclear Cu(I) precursor adducts and the trans-(.mu.-1,2-peroxo)dicopper(II) product. J Am Chem Soc 115:2677–2689

    Article  CAS  Google Scholar 

  26. Brandup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. John Wiley & Sons, New York

    Google Scholar 

  27. Matyjaszewski K, Tsarevsky NV, Braunecker WA, Dong H, Huang J, Jakubowski W, Kwak Y, Nicolay R, Tang W, Yoon JA (2007) Role of Cu0 in Controlled/“Living” Radical Polymerization. Macromol 40:7795–7806

    Article  CAS  Google Scholar 

  28. Zerk TJ, Martinez M, Bernhardt PV (2016) A kinetico-mechanistic study on Cu(II) deactivators employed in atom transfer radical polymerization. Inorg Chem 55:9848–9857

    Article  CAS  Google Scholar 

  29. Tang W, Kwak Y, Braunecker W, Tsarevsky NV, Coote ML, Matyjaszewski K (2008) Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. J Am Chem Soc 130:10702–10713

    Article  CAS  Google Scholar 

  30. Kaur A, Ribelli TG, Schröder K, Matyjaszewski K, Pintauer T (2015) Properties and ATRP activity of copper complexes with substituted tris(2-pyridylmethyl)amine-based ligands. Inorg Chem 54:1474–1486

    Article  CAS  Google Scholar 

  31. Tsarevsky NV, Braunecker WA, Matyjaszewski K (2007) Electron transfer reactions relevant to atom transfer radical polymerization. J Organomet Chem 692:3212–3222

    Article  CAS  Google Scholar 

  32. Fujimura K, Ouchi M, Sawamoto M (2012) Ferrocene cocatalysis in metal-catalyzed living radical polymerization: concerted redox for highly active catalysis. ACS Macro Lett 1:321–323

    Article  CAS  Google Scholar 

  33. Fujimura K, Ouchi M, Sawamoto M (2015) Ferrocene cocatalysis for iron-catalyzed living radical polymerization: active, robust, and sustainable system under concerted catalysis by two iron complexes. Macromol 48:4294–4300

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Higher Education of Russian Federation: project 0729-2020-0039 as a basic part of Federal task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan D. Grishin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 88 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stakhi, S.A., Grishin, D.F. & Grishin, I.D. Tandem catalysis of Atom Transfer Radical Polymerization of acrylonitrile based on simultaneous use of two copper complexes. J Polym Res 28, 457 (2021). https://doi.org/10.1007/s10965-021-02821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02821-6

Keywords

Navigation