Skip to main content
Log in

Controlled copolymerization of acrylonitrile with methyl acrylate and dimethyl itaconate via ARGET ATRP mechanism

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The peculiarities of controlled copolymerization of acrylonitrile with methyl acrylate and dimethyl itaconate in the presence of copper-based catalytic system were investigated. It was shown that the polymerization proceeds in a controlled mode in accordance with ARGET ATRP mechanism. The increase of molecular weights in a strict agreement with theoretically predicted values is observed. The formation of copolymers was confirmed by NMR and MALDI TOF MS analysis. The introduction of mentioned monomers to acrylonitrile results in slight decrease of the polymerization rate. The performed calorimetric investigations showed the smoothing of exothermic effect of the oxidative stabilization of formed copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lutz JF, Lehn JM, Meijer EW, Matyjaszewski K (2016). Nat Rev Mat 1:16024

    Article  CAS  Google Scholar 

  2. Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NN, Oliver S, Shanmugam S, Yeow J (2016). Chem Rev 116:1803–1949

    Article  CAS  PubMed  Google Scholar 

  3. Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn JF, Davis TP, Whittaker MR, Haddleton DM (2016). Chem Rev 116:835–877

    Article  CAS  PubMed  Google Scholar 

  4. Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013). Prog Polym Sci 38:63–235

    Article  CAS  Google Scholar 

  5. Zaremski M, Eremeev I, Garina E, Borisova O, Korolev B (2017). J Polym Res 24:151

    Article  Google Scholar 

  6. Poli R, Allan LEN, Shaver MP (2014). Prog Polym Sci 39:1827

    Article  CAS  Google Scholar 

  7. Grishin DF, Grishin ID (2015). Russ Chem Rev 84:712–736

    Article  CAS  Google Scholar 

  8. Ouchi M, Terashima T, Sawamoto M (2009). Chem Rev 109:4963–5050

    Article  CAS  PubMed  Google Scholar 

  9. Grishin ID, Kiseleva NE, Grishin DF (2015). J Polym Res 22:209

    Article  Google Scholar 

  10. Jakubowski W, Min K, Matyjaszewski K (2006). Macromolecules 39:39–45

    Article  CAS  Google Scholar 

  11. Konkolewicz D, Wang Y, Krys P, Zhong M, Isse AA, Gennaro A, Matyjaszewski K (2014). Polym Chem 5:4396–4417

    Article  Google Scholar 

  12. Wang G, Lu M, Zhong M, Wu H (2012). J Polym Res 19:9782

    Article  Google Scholar 

  13. Rahaman MSA, Ismail AF, Mustafa A (2007). Polym Degrad and Stab 92:1421–1432

    Article  CAS  Google Scholar 

  14. Kaur J, Millington K, Smith S (2016). J Appl Polym Sci 33:43963

    Google Scholar 

  15. Park Soo-Jin. Carbon Fibers. Dordrecht: Springer. 2015. – 178 p

  16. Li P, Shan H (1995). J Appl Polym Sci 56:877–880

    Article  CAS  Google Scholar 

  17. Devasia R, Nair CPR, Sivadasan P, Ninan KN (2005). Polym Int 54:1110–1118

    Article  CAS  Google Scholar 

  18. Devasia R, Nair CPR, Ninan KN (2002). Europ Polym J 38:2003–2010

    Article  CAS  Google Scholar 

  19. Ju A, Zhang K, Luo M, Ge M (2014). J Polym Res 21:395

    Article  Google Scholar 

  20. Jamil SNAM, Daik R, Ahmad I (2007). J Polym Res 14:379–385

    Article  CAS  Google Scholar 

  21. Matyjaszewski K, Jo SM, Paik H, Shipp DA (1999). Macromolecules 32:6431–6438

    Article  CAS  Google Scholar 

  22. Dong H, Tang W, Matyjaszewski K (2007). Macromolecules 40:2974–2977

    Article  CAS  Google Scholar 

  23. Grishin ID, Kurochkina DY, Grishin DF (2017) Polym. Sci. Ser B 59:230–239

    CAS  Google Scholar 

  24. Liu XH, Zhang GB, Li BX, Bai YG, Li YS (2010) J. Polym. Sci. Part A 48:5439–5445

    Article  CAS  Google Scholar 

  25. Pintauer T, Matyjaszewski K (2008). Chem Soc Rev 37:1087–1097

    Article  CAS  PubMed  Google Scholar 

  26. Tyeklar Z, Jacobson RR, Wei N, Murthy NN, Zubieta J, Karlin KD (1993). J Am Chem Soc 115:2611

    Article  Google Scholar 

  27. Brandup J (1999) Polymer handbook4th edn. John Wiley and Sons, New York

    Google Scholar 

  28. Grishin ID, Kurochkina DY, Grishin DF (2015). Russ J Appl Chem 88:1275–1281

    Article  CAS  Google Scholar 

  29. Chen H, Liu D, Ji N, Tan Z, Zong G, Qu R, Wang C (2011) J. Macromol. Sci. Part A 48:284–290

    CAS  Google Scholar 

  30. Rwei SP, Way TF, Hsu YS (2013). Polym. Degrad. and Stab. 98:2072–2080

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Council on Grants at the President of the Russian Federation (Proj. MK-1142.2017.3) and by Russian Foundation for Basic Researches (Proj. 18-43-520016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Grishin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, I.D., Stakhi, S.A., Kurochkina, D.Y. et al. Controlled copolymerization of acrylonitrile with methyl acrylate and dimethyl itaconate via ARGET ATRP mechanism. J Polym Res 25, 261 (2018). https://doi.org/10.1007/s10965-018-1653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1653-9

Keywords

Navigation