Skip to main content
Log in

Influence of PA6 particle filler on morphology, crystallization behavior and dynamic mechanical properties of poly(ε-caprolactone) as an efficient nucleating agent

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(ε-caprolactone) (PCL)/polyamide 6 (PA6) composites were fabricated by dispersing PA6 powder into PCL. The SEM results show good dispersion of PA6 in the PCL matrix. Crystallization behavior, crystal structure and spherulitic morphology of pure PCL and the PCL/PA6 composites, as well as their thermal stability and dynamic mechanical properties, were characterized using various techniques including differential scanning calorimeter, X-ray diffraction (XRD), polarized light microscope (PLM), thermal gravimetric analysis (TGA) and dynamic mechanical analyzer (DMA). The PCL/PA6 composite showed increased storage modulus and glass transition temperature (Tg). PA6 powder functions as a heterogeneous nucleate to promote PCL crystallization but does not alter orthorhombic crystal form, crystallization mechanism and thermal stability of PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    Article  CAS  Google Scholar 

  2. Laycock B, Nikolić M, Colwell JM et al (2017) Lifetime prediction of biodegradable polymers. Prog Polym Sci 71:144–189

    Article  CAS  Google Scholar 

  3. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  4. Eastmond G (1999) Poly(ε-caprolactone) blends. Adv Polym Sci 149:59–223

    Article  CAS  Google Scholar 

  5. Qiao X, Li W, Sun K et al (2009) Isothermal crystallization kinetics of silk fibroin fiber-reinforced poly(ε-caprolactone) biocomposites. Polym Int 58:530–537

    Article  CAS  Google Scholar 

  6. Liang J, Zhou L, Tang C (2013) Crystallization properties of polycaprolactone composites filled with nanometer calcium carbonate. J Appl Polym Sci 128(5):2940–2944

    Article  CAS  Google Scholar 

  7. Azevedo MC, Reis RL, Claase MB et al (2003) Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. J Mater Sci Mater M 14:103–107

    Article  CAS  Google Scholar 

  8. Hajiali F, Tajbakhsh S, Shojaei A (2018) Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: A review. Polym Rev 58(1):1–44

    Article  Google Scholar 

  9. Harrane A, Belbachir M (2007) Synthesis of biodegradable polycaprolactone/montmorillonite nanocomposites by direct in-situ polymerization catalyzed by exchanged clay. Macromol Symp 247:379–384

    Article  CAS  Google Scholar 

  10. Sayyar S, Murray E, Thompson BC et al (2013) Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 52:296–304

    Article  CAS  Google Scholar 

  11. Chin SJ, Doherty M, Vempati S et al (2019) Solvothermal synthesis of graphene oxide and its composites with poly(ε-caprolactone). Nanoscale 11:18672–18682

    Article  CAS  Google Scholar 

  12. Zhuravlev E, Wurm A, Potschke P et al (2014) Kinetics of nucleation and crystallization of poly(ε-caprolactone)-multiwalled carbon nanotube composites. Eur Polym J 52:1–11

    Article  CAS  Google Scholar 

  13. Vacková T, Kratochvíl J, Ostafinska A et al (2017) Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2-based particles. Polym Bull 74:445–464

    Article  Google Scholar 

  14. Guan W, Qiu Z (2012) Isothermal crystallization Kinetics, morphology, and dynamic mechanical properties of biodegradable poly(ε-caprolactone) and octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res 51:3203–3208

    Article  CAS  Google Scholar 

  15. Ali Akbari Ghavimi S, Ebrahimzadeh MH, SolatiHashjin M et al (2015) Polycaprolactone/starch composite: Fabrication, structure, properties, and applications. J Biomed Mater Res Part A 103:2482–2498

    Article  CAS  Google Scholar 

  16. Cai J, Xiong Z, Zhou M et al (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly(ε-caprolactone) composites. Carbohyd Polym 102:746–754

    Article  CAS  Google Scholar 

  17. Zhang H, Luo X, Lin X et al (2016) Polycaprolactone/chitosan blends: simulation and experimental design. Mater Design 90:396–402

    Article  Google Scholar 

  18. Wu CS (2004) Analysis of mechanical, thermal, and morphological behavior of polycaprolactone/wood flour blends. J Appl Polym Sci 94:1000–1006

    Article  CAS  Google Scholar 

  19. Aguiar VO, Marques MFV (2016) Composites of polycaprolactone with cellulose fibers: morphological and mechanical evaluation. Macromol Symp 367(1):101–112

    Article  CAS  Google Scholar 

  20. Bai Y, Jiang C, Wang Q et al (2013) A novel high mechanical strength shape memory polymer based on ethyl cellulose and polycaprolactone. Carbohyd Polym 96(2):522–527

    Article  CAS  Google Scholar 

  21. Boujemaoui A, Cobo Sanchez C, Engström J, Bruce C et al (2017) Polycaprolactone nanocomposites reinforced with cellulose nanocrystals surface-modified via covalent grafting or physisorption-A comparative study. ACS Appl Mater Interfaces 9(40):35305–35318

    Article  CAS  Google Scholar 

  22. Lönnberg H, Larsson K, Lindstrom T et al (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3(5):1426–1433

    Article  Google Scholar 

  23. Sanlı S, Durmus A, Ercan N (2012) Effect of nucleating agent on the nonisothermal crystallization kinetics of glass fiber- and mineral-filled polyamide-6 composites. J Appl Polym Sci 125:E268–E281

    Article  Google Scholar 

  24. Richardson NE, Meakin BJ (1974) The sorption of benzocaine from aqueous solution by nylon 6 powder. J Pharm Pharmac 26:166–174

    Article  CAS  Google Scholar 

  25. Suteu D, Bilba D, Dan F (2007) Synthesis and characterization of polyamide powders for sorption of reactive dyes from aqueous solutions. J Appl Polym Sci 105:1833–1843

    Article  CAS  Google Scholar 

  26. Chen Z, Liu C, Wang Q (2001) Solid-phase preparation of ultra-fine PA6 powder through pan-milling. Polym Eng Sci 41(7):1187–1195

    Article  CAS  Google Scholar 

  27. Takahashi T, Inamura M, Tsujimoto I (1970) Epitaxial growth of polymer crystals on uniaxially drawn polymers. J Polym Sci Part B: Polym Lett 8:651–657

    Article  CAS  Google Scholar 

  28. Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  29. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  30. Liu H, Huang Y, Yuan L et al (2010) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohyd Polym 79:513–519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding support from the National Natural Science Foundation of China (21,204,018, U1204518, U1704144) and China Scholarship Council (201,708,410,015) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.Q. Li and Y.D. Zhang contribute equally as co-first author

Corresponding authors

Correspondence to Haibo Chang or Tong Lin.

Ethics declarations

Conflict of interest

The authors declare no conflicts of financial or non-financial competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, Y., Zhu, F. et al. Influence of PA6 particle filler on morphology, crystallization behavior and dynamic mechanical properties of poly(ε-caprolactone) as an efficient nucleating agent. J Polym Res 28, 461 (2021). https://doi.org/10.1007/s10965-021-02814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02814-5

Keywords

Navigation