Skip to main content
Log in

Zirconium phosphate changing hygroscopicity of polyamide-6 in nanocomposites PA-6/ZrP

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hygroscopicity can be understood as ability of any material to absorb water. This investigation aims to study the effect of lamellar zirconium phosphate (ZrP) in the hygroscopicity of poliamide-6 (PA-6). In situ (PA-6/ZrP) nanocomposites were prepared during the polymerization of caprolactam. Structural, thermal, crystallographic and rheological characteristics were assessed by infrared spectroscopy (FTIR), thermogravimetry, differential scanning calorimetry, wide-angle X-ray diffraction (WAXD), rheological and water absorption measurements. FTIR evidenced strong interaction between polymer/nanofiller. According to the kind of nanofiller, changes in PA-6 thermal stability and crystallinity degree were noticed. Formation of PA-6 α-crystal, microcomposite and possibly exfoliated nanocomposite was predicted by WAXD. Rheological measurements evidenced great interaction between PA-6 and nanofillers. PA-6 hygroscopicity was strongly influenced by ZrP-attained value almost 40% lesser as compared to neat PA-6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  1. Winnacker M, Rieger B. Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun. 2016;37(17):1391–413.

    CAS  PubMed  Google Scholar 

  2. Mano EB, Mendes L. A natureza e os polímeros: meio ambiente, geopolímeros, fitopolímeros e zoopolímeros. São Paulo: Blücher; 2013.

    Google Scholar 

  3. Page I, editor. Polyamides as engineering thermoplastic materials., 1Akron: iSmithers Rapra Publishing; 2000.

    Google Scholar 

  4. Sohel MA, Mandal A, Mondal A, Pan S, SenGupta A. Thermal analysis of ABS/PA6 polymer blend using differential scanning calorimetry. J Therm Anal Calorim. 2017;129(3):1689–95.

    CAS  Google Scholar 

  5. Le Gac P-Y, Arhant M, Le Gall M, Davies P. Yield stress changes induced by water in polyamide 6: characterization and modeling. Polym Degrad Stab. 2017;137:272–80.

    Google Scholar 

  6. Jia N, Fraenkel HA, Kagan VA. Effects of moisture conditioning methods on mechanical properties of injection molded nylon 6. J Reinf Plast Compos. 2004;23(7):729–37.

    CAS  Google Scholar 

  7. Chow W, Ishak Z. Polyamide blend-based nanocomposites: a review. Express Polym Lett. 2015;9(3):165.

    Google Scholar 

  8. Zhang S, Huang Z, Zhang Y, Zhou H. Experimental investigation of moisture diffusion in short-glass-fiber-reinforced polyamide 6, 6. J Appl Polym Sci. 2015. https://doi.org/10.1002/app.42369.

    Article  Google Scholar 

  9. Hassan A, Salleh NM, Yahya R, Sheikh M. Fiber length, thermal, mechanical, and dynamic mechanical properties of injection-molded glass-fiber/polyamide 6, 6: plasticization effect. J Reinf Plast Compos. 2011;30(6):488–98.

    CAS  Google Scholar 

  10. Joshi P, Marathe D. Mechanical properties of highly filled PVC/wood-flour composites. J Reinf Plast Compos. 2010;29(16):2522–33.

    CAS  Google Scholar 

  11. Idrus MM, Hamdan S, Rahman MR, Islam MS. Treated tropical wood sawdust-polypropylene polymer composite: mechanical and morphological study. J Biomater Nanobiotechnol. 2011;2(04):435.

    Google Scholar 

  12. Buchenauer A. Wood fiber polyamide composites for automotive applications. Waterloo: University of Waterloo; 2016.

    Google Scholar 

  13. Stoclet G, Sclavons M, Devaux J. Relations between structure and property of polyamide 11 nanocomposites based on raw clays elaborated by water-assisted extrusion. J Appl Polym Sci. 2013;127(6):4809–24.

    CAS  Google Scholar 

  14. Zheng D, Tang G, Zhang H-B, Yu Z-Z, Yavari F, Koratkar N, et al. In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Compos Sci Technol. 2012;72(2):284–9.

    CAS  Google Scholar 

  15. Yoo Y, Spencer M, Paul D. Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites. Polymer. 2011;52(1):180–90.

    CAS  Google Scholar 

  16. Kausar A. Preparation and characterization of nylon 6 and lignin coated carbon nanotube composite. Int J Mater Chem. 2015;5(4):96–100.

    CAS  Google Scholar 

  17. Xu Q, Chen F, Li X, Zhang Z. The effect of surface functional groups of nanosilica on the properties of polyamide 6/SiO2 nanocomposite. Polish J Chem Technol. 2013;15(3):20–4.

    CAS  Google Scholar 

  18. Liang Y, Xia X, Luo Y, Jia Z. Synthesis and performances of Fe2O3/PA-6 nanocomposite fiber. Mater Lett. 2007;61(14–15):3269–72.

    CAS  Google Scholar 

  19. Xia H, Zhao X, Yang G. Double in situ synthesis of Fe3O4/polyamide 6 magnetic nanocomposite. Mater Lett. 2013;98:90–3.

    CAS  Google Scholar 

  20. Dixon D, Lemonine P, Hamilton J, Lubarsky G, Archer E. Graphene oxide–polyamide 6 nanocomposites produced via in situ polymerization. J Thermoplast Compos Mater. 2015;28(3):372–89.

    CAS  Google Scholar 

  21. Li C, Xiang M, Zhao X, Ye L. In situ synthesis of monomer casting nylon-6/graphene-polysiloxane nanocomposites: intercalation structure, synergistic reinforcing, and friction-reducing effect. ACS Appl Mater Interfaces. 2017;9(38):33176–90.

    CAS  PubMed  Google Scholar 

  22. Zhang S, Zhao J, Pang C, Bonnaud L. Structure and properties of hygroscopic PA6–inorganic salt blend. J Elastomers Plast. 2004;36(3):241–50.

    CAS  Google Scholar 

  23. Vlasveld D, Groenewold J, Bersee H, Picken S. Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties. Polymer. 2005;46(26):12567–76.

    CAS  Google Scholar 

  24. Clearfield A, Stynes J. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J Inorg Nucl Chem. 1964;26(1):117–29.

    CAS  Google Scholar 

  25. Szirtes L, Riess L, Megyeri J, Kuzmann E. Comparative study of layered tetravalent metal phosphates containing various first-row divalent metals. Synthesis, crystalline structure. Central Eur J Chem. 2007;5(2):516–35.

    CAS  Google Scholar 

  26. Pica M, Donnadio A, Capitani D, Vivani R, Troni E, Casciola M. Advances in the chemistry of nanosized zirconium phosphates: a new mild and quick route to the synthesis of nanocrystals. Inorg Chem. 2011;50(22):11623–30.

    CAS  PubMed  Google Scholar 

  27. Yang Y, Liu C, Chang PR, Chen Y, Anderson DP, Stumborg M. Properties and structural characterization of oxidized starch/PVA/α-zirconium phosphate composites. J Appl Polym Sci. 2010;115(2):1089–97.

    CAS  Google Scholar 

  28. Lu H, Wilkie CA. The influence of α-zirconium phosphate on fire performance of EVA and PS composites. Polym Adv Technol. 2011;22(7):1123–30.

    CAS  Google Scholar 

  29. Mendes L, Silva D, Araujo L, Lino A. Zirconium phosphate organically intercalated/exfoliated with long chain amine. J Therm Anal Calorim. 2014;118(3):1461–9.

    CAS  Google Scholar 

  30. Xia F, Yong H, Han X, Sun D. Small molecule-assisted exfoliation of layered zirconium phosphate nanoplatelets by ionic liquids. Nanoscale Res Lett. 2016;11(1):348.

    PubMed  PubMed Central  Google Scholar 

  31. Lino AS, Mendes LC, Silva DF, Malm O. High density polyethylene and zirconium phosphate nanocomposites. Polímeros. 2015;25(5):477–82.

    Google Scholar 

  32. Mendes LC, Silva DF, Lino AS. Linear low-density polyethylene and zirconium phosphate nanocomposites: evidence from thermal, thermo-mechanical, morphological and low-field nuclear magnetic resonance techniques. J Nanosci Nanotechnol. 2012;12(12):8867–73.

    CAS  PubMed  Google Scholar 

  33. Freitas DFS, Mendes LC, Lino AS. Polyamide-6/organointercalated lamellar zirconium phosphate nanocomposites: molecular mobility, crystallography and thermo-mechanical evaluation. J Nanosci Nanotechnol. 2017;17(5):3042–50.

    CAS  Google Scholar 

  34. Saeed K, Park SY. Preparation of multiwalled carbon nanotube/nylon-6 nanocomposites by in situ polymerization. J Appl Polym Sci. 2007;106(6):3729–35.

    CAS  Google Scholar 

  35. Hou W, Tang B, Lu L, Sun J, Wang J, Qin C, et al. Preparation and physico-mechanical properties of amine-functionalized graphene/polyamide 6 nanocomposite fiber as a high performance material. Rsc Adv. 2014;4(10):4848–55.

    CAS  Google Scholar 

  36. Xu Z, Gao C. In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules. 2010;43(16):6716–23.

    CAS  Google Scholar 

  37. ASTM D3418-03 (2003) Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM International, West Conshohocken, PA.

  38. Naffakh M, Marco C, Gómez MA, Jiménez I. Novel melt-processable nylon-6/inorganic fullerene-like WS2 nanocomposites for critical applications. Mater Chem Phys. 2011;129(1–2):641–8.

    CAS  Google Scholar 

  39. ASTM D570-98(2010)e1 (2010) Standard test method for water absorption of plastics. ASTM International, West Conshohocken, PA.

  40. Sun L, Boo WJ, Browning RL, Sue H-J, Clearfield A. Effect of crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure. Chem Mater. 2005;17(23):5606–9.

    CAS  Google Scholar 

  41. Brandao LS, Mendes LC, Medeiros ME, Sirelli L, Dias ML. Thermal and mechanical properties of poly (ethylene terephthalate)/lamellar zirconium phosphate nanocomposites. J Appl Polym Sci. 2006;102(4):3868–76.

    CAS  Google Scholar 

  42. Hajipour AR, Karimi H. Synthesis and characterization of hexagonal zirconium phosphate nanoparticles. Mater Lett. 2014;116:356–8.

    CAS  Google Scholar 

  43. Chow W, Mohd Ishak Z. Mechanical, morphological and rheological properties of polyamide 6/organo-montmorillonite nanocomposites. Express Polym Lett. 2007;1(2):77–83.

    CAS  Google Scholar 

  44. Marini J, Bretas RES. Influence of shape and surface modification of nanoparticle on the rheological and dynamic-mechanical properties of polyamide 6 nanocomposites. Polym Eng Sci. 2013;53(7):1512–28.

    CAS  Google Scholar 

  45. O’Neill A, Bakirtzis D, Dixon D. Polyamide 6/Graphene composites: the effect of in situ polymerisation on the structure and properties of graphene oxide and reduced graphene oxide. Eur Polym J. 2014;59:353–62.

    Google Scholar 

  46. Ali AF, Hanna AA, Gad AE. Synthesis of Α-zirconium phosphate from acetyl acetonate solution; a comparative synthesis study of α-ZrP. Phosphorus Res Bull. 2008;22:32–40.

    CAS  Google Scholar 

  47. Pretsch E, Buehlmann P, Affolter C, Pretsch E, Bhuhlmann P, Affolter C. Structure determination of organic compounds. Berlin: Springer; 2000.

    Google Scholar 

  48. Silverstein RM, Webster FX, Kiemle DJ, Bryce DL. Spectrometric identification of organic compounds. Hoboken: Wiley; 2007.

    Google Scholar 

  49. Majka TM, Cokot M, Pielichowski K. Studies on the thermal properties and flammability of polyamide 6 nanocomposites surface-modified via layer-by-layer deposition of chitosan and montmorillonite. J Therm Anal Calorim. 2018;131(1):405–16.

    CAS  Google Scholar 

  50. Saxena V, Diaz A, Clearfield A, Batteas JD, Hussain MD. Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer. Nanoscale. 2013;5(6):2328–36.

    CAS  PubMed  Google Scholar 

  51. Srinath RG. Sliding wear performance of polyamide 6–clay nanocomposites in water. Compos Sci and Technol. 2007;67(3–4):399–405. https://doi.org/10.1016/j.compscitech.2006.09.004.

    Article  CAS  Google Scholar 

  52. Szakács J, Petrény R, Mészáros L. Crystalline properties of melt-processed polyamide 6 matrix multiscale hybrid composites. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7911-6.

    Article  Google Scholar 

  53. Soulestin J, Rashmi BJ, Bourbigot S, Lacrampe MF, Krawczak P. Mechanical and optical properties of polyamide 6/clay nanocomposite cast films: influence of the degree of exfoliation. Macromol Mater Eng. 2012;297(5):444–54.

    CAS  Google Scholar 

  54. Kiziltas A, Nazari B, Gardner DJ, Bousfield DW. Polyamide 6–cellulose composites: effect of cellulose composition on melt rheology and crystallization behavior. Polym Eng Sci. 2014;54(4):739–46.

    CAS  Google Scholar 

  55. Wang M, Wang W, Liu T, Zhang W-D. Melt rheological properties of nylon 6/multi-walled carbon nanotube composites. Compos Sci Technol. 2008;68(12):2498–502.

    CAS  Google Scholar 

  56. Thirumalai DPR, Andersen TL, Lystrup A (2011) Influence of moisture absorption on properties of fiber reinforced polyamide 6 composites. In: 26th Annual technical conference of the American Society for Composites 2011 and the 2nd Joint US-Canada Conference on Composites. DEStech Publications, Inc.

  57. Rajeesh K, Gnanamoorthy R, Velmurugan R. Effect of humidity on the indentation hardness and flexural fatigue behavior of polyamide 6 nanocomposite. Mater Sci Eng A. 2010;527(12):2826–30.

    Google Scholar 

  58. Krzyżak A, Gąska J, Duleba B (2013) Water absorption of thermoplastic matrix composites with polyamide 6. Zeszyty Naukowe/Akademia Morska w Szczecinie.

  59. Rusu G, Rusu E, Zaltariov M-F. Anionic nylon 612/TiO 2 composite materials: synthesis, characterization and properties. J Inorg Organomet Polym Mater. 2017;27(1):225–48.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Conselho Nacional Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Universidade Federal do Rio de Janeiro (UFRJ) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Mendes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, E.E., Freitas, D.F.S., Cestari, S.P. et al. Zirconium phosphate changing hygroscopicity of polyamide-6 in nanocomposites PA-6/ZrP. J Therm Anal Calorim 139, 293–303 (2020). https://doi.org/10.1007/s10973-019-08396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08396-1

Keywords

Navigation